Algebraic Properties of Qualitative Spatio-temporal Calculi

  • Frank Dylla
  • Till Mossakowski
  • Thomas Schneider
  • Diedrich Wolter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8116)


Qualitative spatial and temporal reasoning is based on so-called qualitative calculi. Algebraic properties of these calculi have several implications on reasoning algorithms. But what exactly is a qualitative calculus? And to which extent do the qualitative calculi proposed meet these demands? The literature provides various answers to the first question but only few facts about the second. In this paper we identify the minimal requirements to binary spatio-temporal calculi and we discuss the relevance of the according axioms for representation and reasoning. We also analyze existing qualitative calculi and provide a classification involving different notions of relation algebra.


Binary Relation Constraint Satisfaction Problem Base Relation Algebraic Property Algebraic Closure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)zbMATHCrossRefGoogle Scholar
  2. 2.
    Balbiani, P., Condotta, J., Fariñas del Cerro, L.: Tractability results in the block algebra. J. Log. Comput. 12(5), 885–909 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Balbiani, P., Condotta, J., Ligozat, G.: On the consistency problem for the INDU calculus. J. Applied Logic 4(2), 119–140 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cohn, A., Renz, J.: Qualitative spatial representation and reasoning. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, ch. 13, pp. 551–596. Elsevier (2008)Google Scholar
  5. 5.
    Dechter, R.: Constraint processing. Elsevier Morgan Kaufmann (2003)Google Scholar
  6. 6.
    Düntsch, I.: Relation algebras and their application in temporal and spatial reasoning. Artif. Intell. Rev. 23(4), 315–357 (2005)zbMATHCrossRefGoogle Scholar
  7. 7.
    Dylla, F., Lee, J.H.: A combined calculus on orientation with composition based on geometric properties. In: ECAI 2010. pp. 1087–1088 (2010)Google Scholar
  8. 8.
    Dylla, F., Mossakowski, T., Schneider, T., Wolter, D.: Algebraic properties of qualitative spatio-temporal calculi. Tech. rep., University of Bremen, Cognitive Systems (2013),
  9. 9.
    Egenhofer, M.: Reasoning about binary topological relations. In: Günther, O., Schek, H.-J. (eds.) SSD 1991. LNCS, vol. 525, pp. 143–160. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  10. 10.
    Frank, A.: Qualitative spatial reasoning with cardinal directions. In: Proc. of ÖGAI 1991. Informatik-Fachberichte, vol. 287, pp. 157–167. Springer (1991)Google Scholar
  11. 11.
    Gantner, Z., Westphal, M., Wölfl, S.: GQR - A Fast Reasoner for Binary Qualitative Constraint Calculi. In: Proc. of the AAAI 2008 Workshop on Spatial and Temporal Reasoning (2008)Google Scholar
  12. 12.
    Grigni, M., Papadias, D., Papadimitriou, C.H.: Topological inference. In: Proc. of IJCAI 1995 (1), pp. 901–907. Morgan Kaufmann (1995)Google Scholar
  13. 13.
    Hirsch, R., Hodkinson, I.: Relation algebras by games, Studies in logic and the foundations of mathematics, vol. 147. Elsevier (2002)Google Scholar
  14. 14.
    Isli, A., Cohn, A.: A new approach to cyclic ordering of 2D orientations using ternary relation algebras. Artif. Intell. 122(1-2), 137–187 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Jonsson, P., Drakengren, T.: A complete classification of tractability in RCC-5. J. Artif. Intell. Res (JAIR) 6, 211–221 (1997)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kontchakov, R., Pratt-Hartmann, I., Wolter, F., Zakharyaschev, M.: Spatial logics with connectedness predicates. Log. Meth. Comp. Sci. 6(3) (2010)Google Scholar
  17. 17.
    Ligozat, G.: Reasoning about cardinal directions. J. Vis. Lang. Comput. 9(1), 23–44 (1998)CrossRefGoogle Scholar
  18. 18.
    Ligozat, G.: Categorical methods in qualitative reasoning: The case for weak representations. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 265–282. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Ligozat, G.: Qualitative Spatial and Temporal Reasoning. Wiley (2011)Google Scholar
  20. 20.
    Ligozat, G., Renz, J.: What is a qualitative calculus? A general framework. In: Zhang, C., Guesgen, H.W., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 53–64. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8, 99–118 (1977)zbMATHCrossRefGoogle Scholar
  22. 22.
    Maddux, R.: Relation algebras, Studies in logic and the foundations of mathematics, vol. 150. Elsevier (2006)Google Scholar
  23. 23.
    Moratz, R.: Representing Relative Direction as a Binary Relation of Oriented Points. In: Proc. of ECAI 2006. pp. 407–411. IOS Press (2006)Google Scholar
  24. 24.
    Moratz, R., Lücke, D., Mossakowski, T.: A condensed semantics for qualitative spatial reasoning about oriented straight line segments. Artif. Intell. 175, 2099–2127 (2011), zbMATHCrossRefGoogle Scholar
  25. 25.
    Moratz, R., Renz, J., Wolter, D.: Qualitative spatial reasoning about line segments. In: Proc. of ECAI 2000. pp. 234–238. IOS Press (2000)Google Scholar
  26. 26.
    Mossakowski, F.: Algebraische Eigenschaften qualitativer Constraint-Kalküle. Diplom thesis, Dept. of Comput. Science, University of Bremen (2007) (in German)Google Scholar
  27. 27.
    Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Mossakowski, T., Moratz, R.: Qualitative reasoning about relative direction of oriented points. Artif. Intell. 180-181, 34–45 (2012), MathSciNetCrossRefGoogle Scholar
  29. 29.
    Mossakowski, T., Lücke, D., Moratz, R.: Relations between spatial calculi about directions and orientations. Technical report, University of BremenGoogle Scholar
  30. 30.
    Navarrete, I., Morales, A., Sciavicco, G., Cárdenas-Viedma, M.: Spatial reasoning with rectangular cardinal relations – the convex tractable subalgebra. Ann. Math. Artif. Intell. 67(1), 31–70 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Nebel, B., Scivos, A.: Formal properties of constraint calculi for qualitative spatial reasoning. KI 16(4), 14–18 (2002)Google Scholar
  32. 32.
    Pujari, A.K., Sattar, A.: A new framework for reasoning about points, intervals and durations. In: Proc. of IJCAI 1999. pp. 1259–1267 (1999)Google Scholar
  33. 33.
    Ragni, M., Scivos, A.: Dependency calculus: Reasoning in a general point relation algebra. In: Furbach, U. (ed.) KI 2005. LNCS (LNAI), vol. 3698, pp. 49–63. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and “Connection”. In: Proc. of KR 1992, pp. 165–176 (1992)Google Scholar
  35. 35.
    Renz, J.: Qualitative Spatial Reasoning with Topological Information. LNCS (LNAI), vol. 2293. Springer, Heidelberg (2002)zbMATHCrossRefGoogle Scholar
  36. 36.
    Renz, J., Mitra, D.: Qualitative direction calculi with arbitrary granularity. In: Zhang, C., Guesgen, H.W., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 65–74. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  37. 37.
    Scivos, A.: Einführung in eine Theorie der ternären RST-Kalküle für qualitatives räumliches Schließen. Diplom thesis, University of Freiburg (2000) (in German)Google Scholar
  38. 38.
    Skiadopoulos, S., Koubarakis, M.: Composing cardinal direction relations. Artif. Intell. 152(2), 143–171 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Skiadopoulos, S., Koubarakis, M.: On the consistency of cardinal direction constraints. Artif. Intell. 163(1), 91–135 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Van de Weghe, N.: Representing and Reasoning about Moving Objects: A Qualitative Approach. Ph.D. thesis, Ghent University (2004)Google Scholar
  41. 41.
    Van de Weghe, N., Kuijpers, B., Bogaert, P., De Maeyer, P.: A qualitative trajectory calculus and the composition of its relations. In: Rodríguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M. (eds.) GeoS 2005. LNCS, vol. 3799, pp. 60–76. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  42. 42.
    Vilain, M., Kautz, H., van Beek, P.: Constraint propagation algorithms for temporal reasoning: a revised report. In: Readings in Qualitative Reasoning about Physical Systems, pp. 373–381. Morgan Kaufmann (1989)Google Scholar
  43. 43.
    Wallgrün, J.O., Frommberger, L., Wolter, D., Dylla, F., Freksa, C.: Qualitative spatial representation and reasoning in the sparQ-toolbox. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition 2007. LNCS (LNAI), vol. 4387, pp. 39–58. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  44. 44.
    Wallgrün, J.O., Frommberger, L., Dylla, F., Wolter, D.: SparQ User Manual V0.7. User manual, University of Bremen (January 2009)Google Scholar
  45. 45.
    Wallgrün, J.O., Wolter, D., Richter, K.F.: Qualitative matching of spatial information. In: Proceedings of ACM GIS (2010)Google Scholar
  46. 46.
    Wolter, D., Lee, J.H.: Qualitative reasoning with directional relations. Artificial Intelligence 174(18), 1498–1507 (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Frank Dylla
    • 1
  • Till Mossakowski
    • 1
    • 2
  • Thomas Schneider
    • 3
  • Diedrich Wolter
    • 1
  1. 1.Collaborative Research Center on Spatial Cognition (SFB/TR 8)Univ. of BremenGermany
  2. 2.DFKI GmbHBremenGermany
  3. 3.Department of Mathematics and Computer ScienceUniversity of BremenGermany

Personalised recommendations