A Geo-ontology Design Pattern for Semantic Trajectories

  • Yingjie Hu
  • Krzysztof Janowicz
  • David Carral
  • Simon Scheider
  • Werner Kuhn
  • Gary Berg-Cross
  • Pascal Hitzler
  • Mike Dean
  • Dave Kolas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8116)


Trajectory data have been used in a variety of studies, including human behavior analysis, transportation management, and wildlife tracking. While each study area introduces a different perspective, they share the need to integrate positioning data with domain-specific information. Semantic annotations are necessary to improve discovery, reuse, and integration of trajectory data from different sources. Consequently, it would be beneficial if the common structure encountered in trajectory data could be annotated based on a shared vocabulary, abstracting from domain-specific aspects. Ontology design patterns are an increasingly popular approach to define such flexible and self-contained building blocks of annotations. They appear more suitable for the annotation of interdisciplinary, multi-thematic, and multi-perspective data than the use of foundational and domain ontologies alone. In this paper, we introduce such an ontology design pattern for semantic trajectories. It was developed as a community effort across multiple disciplines and in a data-driven fashion. We discuss the formalization of the pattern using the Web Ontology Language (OWL) and apply the pattern to two different scenarios, personal travel and wildlife monitoring.


Design Pattern Semantic Annotation Trajectory Data Trajectory Pattern Competency Question 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvares, L.O., Bogorny, V., Kuijpers, B., De Macedo, J.A.F., Moelans, B., Vaisman, A.: A model for enriching trajectories with semantic geographical information. In: Samet, H., Shahabi, C., Schneider, M. (eds.) Proceedings of the 15th ACM International Symposium on Geographic Information Systems, ACM-GIS 2007, Seattle, Washington, USA, November 7-9. ACM Press (2007)Google Scholar
  2. 2.
    Battle, R., Kolas, D.: Enabling the geospatial Semantic Web with Parliament and GeoSPARQL. Semantic Web 3(4), 355–370 (2012)Google Scholar
  3. 3.
    Berg-Cross, G., Cruz, I., Dean, M., Finin, T., Gahegan, M., Hitzler, P., Hua, H., Janowicz, K., Li, N., Murphy, P., Nordgren, B., Obrst, L., Schildhauer, M., Sheth, A., Sinha, K., Thessen, A., Wiegand, N., Zaslavsky, I.: Semantics and Ontologies for EarthCube. In: Proceedings of the 2012 Workshop on GIScience in the Big Data Age, In Conjunction with the Seventh International Conference on Geographic Information Science 2012 (GIScience 2012), Columbus, Ohio, USA, September 18 (2012)Google Scholar
  4. 4.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked Data – The Story So Far. International Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)CrossRefGoogle Scholar
  5. 5.
    Bogorny, V., Kuijpers, B., Alvares, L.O.: ST-DMQL: A semantic trajectory data mining query language. International Journal of Geographical Information Science 23(10), 1245–1276 (2009)CrossRefGoogle Scholar
  6. 6.
    Brakatsoulas, S., Pfoser, D., Tryfona, N.: Modeling, storing, and mining moving object databases. In: 8th International Database Engineering and Applications Symposium (IDEAS 2004), Coimbra, Portugal, July 7-9, pp. 68–77. IEEE Computer Society (2004)Google Scholar
  7. 7.
    Brodaric, B., Probst, F.: Enabling cross-disciplinary e-science by integrating geoscience ontologies with Dolce. IEEE Intelligent Systems 24(1), 66–77 (2009)CrossRefGoogle Scholar
  8. 8.
    Carral, D., Scheider, S., Janowicz, K., Vardeman, C., Krisnadhi, A.A., Hitzler, P.: An ontology design pattern for cartographic map scaling. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 76–93. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Carral, D., Janowicz, K., Hitzler, P.: A logical geo-ontology design pattern for quantifying over types. In: Cruz, I.F., Knoblock, C., Kröger, P., Tanin, E., Widmayer, P. (eds.) SIGSPATIAL 2012 International Conference on Advances in Geographic Information Systems (Formerly Known as GIS), SIGSPATIAL 2012, Redondo Beach, CA, USA, November 7-9, pp. 239–248. ACM (2012)Google Scholar
  10. 10.
    Chan, L.-W., Chiang, J.-R., Chen, Y.-C., Ke, C.-N., Hsu, J., Chu, H.-H.: Collaborative localization: Enhancing WiFi-based position estimation with neighborhood links in clusters. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 50–66. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Chiou, Y., Wang, C., Yeh, S., Su, M.: Design of an adaptive positioning system based on WiFi radio signals. Computer Communications 32(7), 1245–1254 (2009)CrossRefGoogle Scholar
  12. 12.
    Compton, M., Barnaghi, P.M., Bermudez, L., Garcia-Castro, R., Corcho, Ó., Cox, S., Graybeal, J., Hauswirth, M., Henson, C.A., Herzog, A., Huang, V.A., Janowicz, K., Kelsey, W.D., Phuoc, D.L., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K.R., Passant, A., Sheth, A.P., Taylor, K.: The SSN ontology of the W3C semantic sensor network incubator group. Journal on Web Semantics 17, 25–32 (2012)CrossRefGoogle Scholar
  13. 13.
    Dodge, S., Weibel, R., Lautenschütz, A.K.: Towards a taxonomy of movement patterns. Information Visualization 7(3), 240–252 (2008)CrossRefGoogle Scholar
  14. 14.
    Gangemi, A.: Ontology design patterns for semantic web content. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 262–276. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Gangemi, A., Fisseha, F., Keizer, J., Lehmann, J., Liang, A., Pettman, I., Sini, M., Taconet, M.: A core ontology of fishery and its use in the fishery ontology service project. In: First International Workshop on Core Ontologies, EKAW Conference. CEUR-WS, vol. 118 (2004)Google Scholar
  16. 16.
    Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 166–181. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Grüninger, M., Fox, M.S.: The role of competency questions in enterprise engineering. In: Proceedings of the IFIP WG5, vol. 7, pp. 212–221 (1994)Google Scholar
  18. 18.
    Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM Transactions on Database Systems (TODS) 25(1), 1–42 (2000)CrossRefGoogle Scholar
  19. 19.
    Güting, R., De Almeida, V., Ding, Z.: Modeling and querying moving objects in networks. The VLDB Journal 15(2), 165–190 (2006)CrossRefGoogle Scholar
  20. 20.
    Gwon, Y., Jain, R., Kawahara, T.: Robust indoor location estimation of stationary and mobile users. In: Proceedings IEEE INFOCOM 2004, the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies, Hong Kong, China, March 7-11, pp. 1032–1043. IEEE (2004)Google Scholar
  21. 21.
    van Hage, W.R., Malaise, V., Segers, R.H., Hollink, L., Schreiber, G.: Design and use of the Simple Event Model (SEM). Journal on Web Semantics 9(2), 128–136 (2011)CrossRefGoogle Scholar
  22. 22.
    Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. CRC Press (2010)Google Scholar
  23. 23.
    Horne, J.S., Garton, E.O., Krone, S.M., Lewis, J.S.: Analyzing animal movements using Brownian bridges. Ecology 88, 2354–2363 (2007)CrossRefGoogle Scholar
  24. 24.
    Hu, Y., Janowicz, K.: Improving personal information management by integrating activities in the physical world with the semantic desktop. In: Cruz, I.F., Knoblock, C., Kröger, P., Tanin, E., Widmayer, P. (eds.) SIGSPATIAL 2012 International Conference on Advances in Geographic Information Systems (formerly known as GIS), SIGSPATIAL 2012, Redondo Beach, CA, USA, November 7-9, pp. 578–581. ACM (2012)Google Scholar
  25. 25.
    Kays, R., Jansen, P.A., Knecht, E.M., Vohwinkel, R., Wikelski, M.: The effect of feeding time on dispersal of virola seeds by toucans determined from gps tracking and accelerometers. Acta Oecologica 37(6), 625–631 (2011)CrossRefGoogle Scholar
  26. 26.
    Kays, R., Jansen, P.A., Knecht, E.M., Vohwinkel, R., Wikelski, M.: Data from: The effect of feeding time on dispersal of virola seeds by toucans determined from gps tracking and accelerometers. Movebank Data Repository (2012)Google Scholar
  27. 27.
    Li, X., Claramunt, C., Ray, C., Lin, H.: A semantic-based approach to the representation of network-constrained trajectory data. In: Riedl, A., Kainz, W., Elmes, G.A. (eds.) Progress in Spatial Data Handling, pp. 451–464. Springer (2006)Google Scholar
  28. 28.
    McKenzie, G., Adams, B., Janowicz, K.: A thematic approach to user similarity built on geosocial check-ins. In: Proceedings of the 2013 AGILE Conference (to appear, 2013)Google Scholar
  29. 29.
    Mika, P., Oberle, D., Gangemi, A., Sabou, M.: Foundations for service ontologies: aligning OWL-S to Dolce. In: Proceedings of the 13th World Wide Web Conference, pp. 563–572. ACM (2004)Google Scholar
  30. 30.
    Mouza, C., Rigaux, P.: Mobility patterns. GeoInformatica 9(4), 297–319 (2005)CrossRefGoogle Scholar
  31. 31.
    Ni, L., Liu, Y., Lau, Y., Patil, A.: LANDMARC: indoor location sensing using active RFID. Wireless Networks 10(6), 701–710 (2004)CrossRefGoogle Scholar
  32. 32.
    Priyantha, N.: The cricket indoor location system. Ph.D. thesis, Massachusetts Institute of Technology (2005)Google Scholar
  33. 33.
    Schmid, F., Richter, K.-F., Laube, P.: Semantic trajectory compression. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 411–416. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Spaccapietra, S., Parent, C., Damiani, M., De Macedo, J., Porto, F., Vangenot, C.: A conceptual view on trajectories. Data and Knowledge Engineering 65(1), 126–146 (2008)CrossRefGoogle Scholar
  35. 35.
    Vazirgiannis, M., Wolfson, O.: A spatiotemporal model and language for moving objects on road networks. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 20–35. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  36. 36.
    Willems, N., van Hage, W.R., de Vries, G., Janssens, J.H.M., Malaise, V.: An integrated approach for visual analysis of a multisource moving objects knowledge base. International Journal of Geographical Information Science 24(10), 1543–1558 (2010)CrossRefGoogle Scholar
  37. 37.
    Yan, Z., Macedo, J., Parent, C., Spaccapietra, S.: Trajectory ontologies and queries. Transactions in GIS 12, 75–91 (2008)CrossRefGoogle Scholar
  38. 38.
    Yan, Z.: Towards semantic trajectory data analysis: A conceptual and computational approach. In: Rigaux, P., Senellart, P. (eds.) Proceedings of the VLDB 2009 PhD Workshop. Co-located with the 35th International Conference on Very Large Data Bases (VLDB 2009), Lyon, France, August 24. VLDB Endowment (2009)Google Scholar
  39. 39.
    Ying, J.J.C., Lu, E.H.C., Lee, W.C., Weng, T.C., Tseng, V.S.: Mining user similarity from semantic trajectories. In: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks, pp. 19–26. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Yingjie Hu
    • 1
  • Krzysztof Janowicz
    • 1
  • David Carral
    • 2
  • Simon Scheider
    • 3
  • Werner Kuhn
    • 3
  • Gary Berg-Cross
    • 4
  • Pascal Hitzler
    • 2
  • Mike Dean
    • 5
  • Dave Kolas
    • 5
  1. 1.Department of GeographyUniversity of California Santa BarbaraUSA
  2. 2.Kno.e.sis CenterWright State UniversityUSA
  3. 3.Institute for GeoinformaticsUniversity of MünsterGermany
  4. 4.Spatial Ontology Community of Practice (SOCOP)USA
  5. 5.Raytheon BBN TechnologiesUSA

Personalised recommendations