Modeling Spatial Knowledge from Verbal Descriptions

  • Lamia Belouaer
  • David Brosset
  • Christophe Claramunt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8116)


Over the past few years, several alternative approaches have been suggested to represent the spatial knowledge that emerges from natural environments. This paper introduces a rule-based approach whose objective is to generate a spatial semantic network derived from several humans reporting a navigation process in a natural environment. Verbal descriptions are decomposed and characterized by a graph-based model where actions and landmarks are the main abstractions. A set of rules implemented as first order predicate calculus are identified and applied, and allow to merge the common knowledge inferred from route descriptions. A spatial semantic network is derived and provides a global and semantic view of the environment. The whole approach is illustrated by a case study and some preliminary experimental results.


navigation knowledge verbal description spatial semantic network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belouaer, L., Bouzid, M., Mouaddib, A.: Ontology based spatial planning for human-robot interaction. In: 17th International Symposium on Temporal Representation and Reasoning (TIME), pp. 103–110. IEEE (2010)Google Scholar
  2. 2.
    Brosset, D., Claramunt, C., Saux, É.: A location and action-based model for route descriptions. In: Fonseca, F., Rodríguez, M.A., Levashkin, S. (eds.) GeoS 2007. LNCS, vol. 4853, pp. 146–159. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Brosset, D.: Description d’itinéraire en milieu naturel: modèle intégré de description verbale et de représentation spatiale au sein des systèmes d’information géographique. Unpublished PhD report, Arts et Métiers Paritech (2008)Google Scholar
  4. 4.
    Brosset, D., Claramunt, C., Saux, E.: Wayfinding in natural and urban environments: a comparative study. Cartographica, Toronto University Press 43(1), 21–30 (2008)Google Scholar
  5. 5.
    Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters 19(3), 255–259 (1998)zbMATHCrossRefGoogle Scholar
  6. 6.
    Darken, R.P., Peterson, B.: Spatial orientation, wayfinding, and representation. In: Handbook of Virtual Environments, pp. 493–518 (2002)Google Scholar
  7. 7.
    Freksa, C., Moratz, R., Barkowsky, T.: Schematic maps for robot navigation. In: Habel, C., Brauer, W., Freksa, C., Wender, K.F. (eds.) Spatial Cognition 2000. LNCS (LNAI), vol. 1849, p. 100. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Habel, C., Kerzel, M., Lohmann, K.: Verbal assistance in tactile-map explorations: A case for visual representations and reasoning. In: Proceedings of AAAI Workshop on Visual Representations and Reasoning, pp. 34–41 (2010)Google Scholar
  9. 9.
    Mark, D., Freksa, C., Hirtle, S., Lloyd, R., Tversky, B.: Cognitive models of geographical space. International Journal of Geographical Information Science 13(8), 747–774 (1999)CrossRefGoogle Scholar
  10. 10.
    Michon, P.-E., Denis, M.: When and why are visual landmarks used in giving directions? In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 292–305. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Nicholson, J., Kulyukin, V., Coster, D.: Shoptalk: Independent blind shopping through verbal route directions and barcode scans. The Open Rehabilitation Journal 2, 11–23 (2009)CrossRefGoogle Scholar
  12. 12.
    Richter, K.F., Tomko, M., Winter, S.: A dialog-driven process of generating route directions. Computers, Environment and Urban Systems 32(3), 233–245 (2008)CrossRefGoogle Scholar
  13. 13.
    Schuldes, S., Boland, K., Roth, M., Strube, M., Krömker, S., Frank, A.: Modeling spatial knowledge for generating verbal and visual route directions. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011, Part IV. LNCS, vol. 6884, pp. 366–377. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Thomas, K.E., Sripada, S., Noordzij, M.L.: Atlas. txt: exploring linguistic grounding techniques for communicating spatial information to blind users. Universal Access in the Information Society, 1–14 (2012)Google Scholar
  15. 15.
    Werner, S., Long, P.: Cognition meets le corbusier - cognitive principles of architectural design. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition III. LNCS (LNAI), vol. 2685, pp. 112–126. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Westphal, M., Wölfl, S., Nebel, B., Renz, J.: On qualitative route descriptions: Representation and computational complexity. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, vol. Two, pp. 1120–1125. AAAI Press (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Lamia Belouaer
    • 1
  • David Brosset
    • 1
  • Christophe Claramunt
    • 1
  1. 1.Naval Academy Research InstituteBrest NavalFrance

Personalised recommendations