Human Spatial Behavior, Sensor Informatics, and Disaggregate Data

  • Anastasia Petrenko
  • Scott Bell
  • Kevin Stanley
  • Winchel Qian
  • Anton Sizo
  • Dylan Knowles
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8116)


With the increasing availability of tracking technology, researchers have new tools for examining patterns of human spatial behavior. However, due to limitations of GPS, traditional tracking tools cannot be applied reliably indoors. Monitoring indoor movement can significantly improve building management, emergency operations, and security control; it can also reveal relationships among spatial behavior and decision making, the complexity of such spaces, and the existence of different strategies or approaches to acquiring and using knowledge about the built environment (indoors and out). By employing methods from computer science and GIS we show that pedestrian indoor movement trajectories can be successfully tracked and analyzed with existing sensor and WiFi-based positioning systems over long periods of time and at fine grained temporal scales. We present a month-long experiment with 37 participants tracked through an institutional setting and demonstrate how post-processing of the collected sensor dataset of over 36 million records can be employed to better understand indoor human behavior.


Indoor tracking sensor-based data collection indoor mobility indoor movement trajectories 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laube, P.: Progress in movement pattern analysis. Behaviour Monitoring and Interpretation-BMI-Smart Environments 3, 43–71 (2009)Google Scholar
  2. 2.
    Li, R., Klippel, A.: Wayfinding in Libraries: Can Problems Be Predicted? Journal of Map & Geography Libraries 8(1), 21–38 (2012)CrossRefGoogle Scholar
  3. 3.
    Liebig, T., Xu, Z., May, M., Wrobel, S.: Pedestrian Quantity Estimation with Trajectory Patterns. Machine Learning and Knowledge Discovery in Databases, 629–643 (2012)Google Scholar
  4. 4.
    Evans, G.W., Marrero, D.G., Butler, P.A.: Environmental learning and cognitive mapping. Environment and Behavior 13(1), 83–104 (1981)CrossRefGoogle Scholar
  5. 5.
    Downs, R.M.: Image & environment: Cognitive mapping and spatial behavior. Aldine (2005)Google Scholar
  6. 6.
    Downs, R.M., Stea, D.: Cognitive maps and spatial behavior: Process and products. Image and Environment 8(26) (1973)Google Scholar
  7. 7.
    Kitchin, R.M.: Cognitive maps: What are they and why study them? Journal of Environmental Psychology 14(1), 1–19 (1994)CrossRefGoogle Scholar
  8. 8.
    Tversky, B.: Cognitive maps, cognitive collages, and spatial mental models. In: Spatial Information Theory A Theoretical Basis for GIS, pp. 14–24. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  9. 9.
    Harrell, W.A., Bowlby, J.W., Hall-Hoffarth, D.: Directing wayfinders with maps: The effects of gender, age, route complexity, and familiarity with the environment. The Journal of Social Psychology 140(2), 169–178 (2000)CrossRefGoogle Scholar
  10. 10.
    Morganti, F., Carassa, A., Geminiani, G.: Planning optimal paths: A simple assessment of survey spatial knowledge in virtual environments. Computers in Human Behavior 23(4), 1982–1996 (2007)CrossRefGoogle Scholar
  11. 11.
    Rovine, M.J., Weisman, G.D.: Sketch-map variables as predictors of way-finding performance. Journal of Environmental Psychology 9(3), 217–232 (1989)CrossRefGoogle Scholar
  12. 12.
    Moeser, S.D.: Cognitive mapping in a complex building. Environment and Behavior 20(1), 21–49 (1988)CrossRefGoogle Scholar
  13. 13.
    Golledge, R.G.: Wayfinding behavior: Cognitive mapping and other spatial processes. JHU Press (1999)Google Scholar
  14. 14.
    Tversky, B.: What do sketches say about thinking. In: 2002 AAAI Spring Symposium, Sketch Understanding Workshop, Stanford University, AAAI Technical Report SS-02-08, pp. 148-151 (2002)Google Scholar
  15. 15.
    Skubic, M., Blisard, S., Bailey, C., Adams, J.A., Matsakis, P.: Qualitative analysis of sketched route maps: translating a sketch into linguistic descriptions. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(2), 1275–1282 (2004)CrossRefGoogle Scholar
  16. 16.
    Kopczynski, M., Sester, M.: Graph based methods for localisation by a sketch. In: Proceedings of the XXII International Cartographic Conference, ICCC 2005 (2005)Google Scholar
  17. 17.
    Kopczynski, M.: Efficient spatial queries with sketches. In: Proceedings of the ISPRS Technical Commission II Symposium, pp. 19–24 (2006)Google Scholar
  18. 18.
    Passini, R.: Spatial representations, a wayfinding perspective. Journal of Environmental Psychology 4(2), 153–164 (1984)CrossRefGoogle Scholar
  19. 19.
    Huynh, N.T., Doherty, S., Sharpe, B.: Gender Differences in the Sketch Map Creation Process. Journal of Maps 6(1), 270–288 (2010)CrossRefGoogle Scholar
  20. 20.
    Bell, S., Archibald, J.: Sketch Mapping and Geographic Knowledge: What Role for Drawing Ability? In: Workshop of an Interdisciplinary Approach to Understanding and Processing Sketch Maps in Conjunction with COSIT 2011, Belfast, ME, vol. 42, pp. 1–10 (2011)Google Scholar
  21. 21.
    Stange, H., Liebig, T., Hecker, D., Andrienko, G., Andrienko, N.: Analytical workflow of monitoring human mobility in big event settings using Bluetooth. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, pp. 51–58. ACM (2011)Google Scholar
  22. 22.
    Zhou, Z., Chen, X., Chung, Y.C., He, Z., Han, T.X., Keller, J.M.: Activity analysis, summarization, and visualization for indoor human activity monitoring. Circuits and Systems for Video Technology. IEEE Transactions on Circuits and Systems for Video Technology 18(11), 1489–1498 (2008)CrossRefGoogle Scholar
  23. 23.
    Seifeldin, M., Youssef, M.: A deterministic large-scale device-free passive localization system for wireless environments. In: Proceedings of the 3rd International Conference on Pervasive Technologies Related to Assistive Environments, p. 51. ACM (2010)Google Scholar
  24. 24.
    Zhang, D., Liu, Y., Ni, L.M.: Rass: A real-time, accurate and scalable system for tracking transceiver-free objects. In: 2011 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 197–204. IEEE (2011)Google Scholar
  25. 25.
    Hashemian, M.S., Stanley, K.G., Knowles, D.L., Calver, J., Osgood, N.D.: Human network data collection in the wild: the epidemiological utility of micro-contact and location data. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, pp. 255–264. ACM (2012)Google Scholar
  26. 26.
    Bell, S., Jung, W.R., Krishnakumar, V.: WiFi-based enhanced positioning systems: accuracy through mapping, calibration, and classification. In: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, pp. 3–9. ACM (2010)Google Scholar
  27. 27.
    Jung, W.R., Bell, S., Petrenko, A., Sizo, A.: Potential risks of WiFi-based indoor positioning and progress on improving localization functionality. In: Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, pp. 13–20. ACM (2012)Google Scholar
  28. 28.
    Zandbergen, P.A.: Comparison of WiFi positioning on two mobile devices. Journal of Location Based Services 6(1), 35–50 (2012)CrossRefGoogle Scholar
  29. 29.
    Curran, K., Furey, E., Lunney, T., Santos, J., Woods, D., McCaughey, A.: An evaluation of indoor location determination technologies. Journal of Location Based Services 5(2), 61–78 (2011)CrossRefGoogle Scholar
  30. 30.
    Jan, S.S., Hsu, L.T., Tsai, W.M.: Development of an Indoor location based service test bed and geographic information system with a wireless sensor network. Sensors 10(4), 2957–2974 (2010)CrossRefGoogle Scholar
  31. 31.
    Gu, Y., Lo, A., Niemegeers, I.: A survey of indoor positioning systems for wireless personal networks. IEEE Communications Surveys & Tutorials 11(1), 13–32 (2009)CrossRefGoogle Scholar
  32. 32.
    Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based user location and tracking system. In: Proceedings of the INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 775–784. IEEE (2000)Google Scholar
  33. 33.
    King, T., Kopf, S., Haenselmann, T., Lubberger, C., Effelsberg, W.: Compass: A probabilistic indoor positioning system based on 802.11 and digital compasses. In: Proceedings of the 1st International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization, pp. 34–40. ACM (2006)Google Scholar
  34. 34.
    Chen, Y., Yang, Q., Yin, J., Chai, X.: Power-efficient access-point selection for indoor location estimation. IEEE Transactions on Knowledge and Data Engineering 18(7), 877–888 (2006)CrossRefGoogle Scholar
  35. 35.
    Wei, T., Bell, S.: Impact of Indoor Location Information Reliability on Users’ Trust of an Indoor Positioning System. Geographic Information Science, 258–269 (2012)Google Scholar
  36. 36.
    Li, B., Salter, J., Dempster, A.G., Rizos, C.: Indoor positioning techniques based on wireless LAN. In: First IEEE International Conference on Wireless Broadband and Ultra Wideband Communications, Sydney, Australia, pp. 13–16 (2006)Google Scholar
  37. 37.
    Ladd, A.M., Bekris, K.E., Rudys, A., Kavraki, L.E., Wallach, D.S.: Robotics-based location sensing using wireless ethernet. Wireless Networks 11(1-2), 189–204 (2005)CrossRefGoogle Scholar
  38. 38.
    Harle, R.: A Survey of Indoor Inertial Positioning Systems for Pedestrians, Communications Surveys & Tutorials, pp. 1–13. IEEE (2013)Google Scholar
  39. 39.
    Scott, C.: Improved GPS positioning for motor vehicles through map matching. In: Proceedings of the 7th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1994), pp. 1391–1400 (1994)Google Scholar
  40. 40.
    Zhang, X., Wang, Q., Wan, D.: The relationship among vehicle positioning performance, map quality, and sensitivities and feasibilities of map-matching algorithms. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 468–473. IEEE (2003)Google Scholar
  41. 41.
    Quddus, M., Ochieng, W., Zhao, L., Noland, R.: A general map matching algorithm for transport telematics applications. GPS Solutions 7(3), 157–167 (2003)CrossRefGoogle Scholar
  42. 42.
    Gilliéron, P.Y., Merminod, B.: Personal navigation system for indoor applications. In: 11th IAIN World Congress, pp. 21–24 (2003)Google Scholar
  43. 43.
    Lorenz, B., Ohlbach, H., Stoffel, E.P.: A hybrid spatial model for representing indoor environments. Web and Wireless Geographical Information Systems, 102–112 (2006)Google Scholar
  44. 44.
    Hölscher, C., Vrachliotis, G., Meilinger, T.: The floor strategy: Wayfinding cognition in a multi-level building. In: Proceedings of the 5th International Space Syntax Symposium, pp. 823–824 (2006)Google Scholar
  45. 45.
    Thill, J.C., Dao, T.H.D., Zhou, Y.: Traveling in the three-dimensional city: applications in route planning, accessibility assessment, location analysis and beyond. Journal of Transport Geography 19(3), 405–421 (2011)CrossRefGoogle Scholar
  46. 46.
    Taneja, S., Akinci, B., Garrett, J.H., Soibelman, L., East, B.: Transforming IFC-Based Building Layout Information into a Geometric Topology Network for Indoor Navigation Assistance. In: Computing in Civil Engineering, pp. 315–322. ASCE (2011)Google Scholar
  47. 47.
    Becker, T., Nagel, C., Kolbe, T.H.: A multilayered space-event model for navigation in indoor spaces. 3D Geo-Information Sciences, 61–77 (2009)Google Scholar
  48. 48.
    Werner, M., Kessel, M.: Organisation of Indoor Navigation data from a data query perspective. In: Ubiquitous Positioning Indoor Navigation and Location Based Service (UPINLBS), pp. 1–6. IEEE (2010)Google Scholar
  49. 49.
    Pu, S., Zlatanova, S.: Evacuation route calculation of inner buildings. In: Geo-information for Disaster Management, pp. 1143–1161. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  50. 50.
    Lee, D.-T.: Medial axis transformation of a planar shape. IEEE Transactions on Pattern Analysis and Machine Intelligence, 363–369 (1982)Google Scholar
  51. 51.
    Wallgrün, J.O.: Autonomous construction of hierarchical voronoi-based route graph representations. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 413–433. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  52. 52.
    Lee, J.: A spatial access-oriented implementation of a 3-D GIS topological data model for urban entities. GeoInformatica 8(3), 237–264 (2004)CrossRefGoogle Scholar
  53. 53.
    Lee, J.: 3D data model for representing topological relations of urban features. In: Proceedings of the 21st Annual ESRI International User Conference, San Diego, CA, USA (2001)Google Scholar
  54. 54.
    Lee, J., Kwan, M.P.: A combinatorial data model for representing topological relations among 3D geographical features in micro‐spatial environments. International Journal of Geographical Information Science 19(10), 1039–1056 (2005)CrossRefGoogle Scholar
  55. 55.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Anastasia Petrenko
    • 1
  • Scott Bell
    • 1
  • Kevin Stanley
    • 2
  • Winchel Qian
    • 2
  • Anton Sizo
    • 1
  • Dylan Knowles
    • 2
  1. 1.Dept. of Geography and PlanningUniversity of SaskatchewanSaskatoonCanada
  2. 2.Dept. of Computer ScienceUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations