Advertisement

Undistorting the Past: New Techniques for Orthorectification of Archaeological Aerial Frame Imagery

  • Geert VerhoevenEmail author
  • Christopher Sevara
  • Wilfried Karel
  • Camillo Ressl
  • Michael Doneus
  • Christian Briese
Chapter
Part of the Natural Science in Archaeology book series (ARCHAEOLOGY)

Abstract

Archaeologists using airborne data can encounter a large variety of frame images in the course of their work. These range from vertical aerial photographs acquired with very expensive calibrated optics to oblique images from hand-held, uncalibrated cameras and even photographs shot with compact cameras from an array of unmanned airborne solutions. Additionally, imagery can be recorded in one or more spectral bands of the complete optical electromagnetic spectrum. However, these aerial images are rather useless from an archaeological standpoint as long as they are not interpreted in detail. Furthermore, the relevant archaeological information interpreted from these images has to be mapped and compared with information from other sources. To this end, the imagery must be accurately georeferenced, and the many geometrical distortions induced by the optics, the terrain and the camera tilt should be corrected. This chapter focuses on several types of archaeological airborne frame imagery, the distortion factors that are influencing these two-dimensional still images and the necessary steps to compute orthophotographs from them. Rather than detailing the conventional photogrammetric orthorectification workflows, this chapter mainly centres on the use of computer vision-based solutions such as structure from motion (SfM) and dense multi-view stereo (MVS). In addition to a theoretical underpinning of the working principles and algorithmic steps included in both SfM and MVS, real-world imagery originating from traditional and more advanced airborne imaging platforms will be used to illustrate the possibilities of such a computer vision-based approach: the variety of imagery that can be dealt with, how (accurately) these images can be transformed into map-like orthophotographs and how these results can aid in the documentation of archaeological resources at a variety of spatial scales. Moreover, the case studies detailed in this chapter will also prove that this approach might move beyond current restrictions of conventional photogrammetry due to its applicability to datasets that were previously thought to be unsuitable for convenient georeferencing.

Keywords

Graphic Processing Unit Scale Invariant Feature Transform Aerial Image Bundle Adjustment Lens Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This article has been written within the framework of the Austrian Science Fund (FWF): P 24116-N23. The case study from the Potenza Valley Survey project was made possible thanks to support from Belgian Science Policy (Interuniversity Attraction Poles, project P6/22). The Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology (archpro.lbg.ac.at) is based on an international cooperation of the Ludwig Boltzmann Gesellschaft (A), the University of Vienna (A), the Vienna University of Technology (A), the Austrian Central Institute for Meteorology and Geodynamic (A), the office of the Provincial Government of Lower Austria (A), Airborne Technologies GmbH (A), RGZM (Roman-Germanic Central Museum) Mainz (D), RAÄ (Swedish National Heritage Board) (S), IBM VISTA (University of Birmingham) (GB) and NIKU (Norwegian Institute for Cultural Heritage Research) (N).

References

  1. Aber JS, Aber SW, Leffler B (2001) Challenge of infrared kite aerial photography. Trans Kansas Acad Sci 104:18–27. doi: 10.1660/0022-8443(2001)104[0018:COIKAP]2.0.CO;2 Google Scholar
  2. Agisoft LLC (2012) Agisoft PhotoScan user manual. Professional edition, version 0.9.0. http://downloads.agisoft.ru/pdf/photoscan-pro_0_9_0_en.pdf. Accessed 13 Feb 2013
  3. Altenhofen RE, Hedden RT (1966) Transformation and rectification. In: Thompson MM, Eller RC, Radlinski WA, Speert JL (eds) Manual of photogrammetry, vol II, 3rd edn. American Society of Photogrammetry, Falls Church, pp 803–849Google Scholar
  4. Álvarez P, Antonio J, Herrera VM, Martínez del Pozo JÁ, de Tena MT (2013) Multi-temporal archaeological analyses of alluvial landscapes using the photogrammetric restitution of historical flights: a case study of Medellin (Badajoz, Spain). J Archaeol Sci 40:349–364. doi: 10.1016/j.jas.2012.08.025 Google Scholar
  5. American Society for Photogrammetry and Remote Sensing, Specifications and Standards Committee (1990) ASPRS accuracy standards for large-scale maps. Photogramm Eng Remote Sens 56:1068–1070Google Scholar
  6. Appetecchia A, Brandt O, Menander H, Thorén H (2012) New methods for documentation and analysis in building archaeology: prestudy. a project funded by the Swedish National Heritage Board, R & D funds, Lund. http://www.arkeologiuv.se/cms/showdocument/documents/extern_webbplats/arkeologiuv/publikationer_uv/rapporter/uv_rapport/2012/uvr2012_001.pdf. Accessed 4 Feb 2013
  7. Barazzetti L, Remondino F, Scaioni M (2011) Automated and accurate orientation of complex image sequences. In: 3D-ARCH 2011: 3D virtual reconstruction and visualization of complex architectures, Proceedings of the 4th ISPRS international workshop, Trento, Italy, 2–4 Mar 2011. ISPRSGoogle Scholar
  8. Barber M (2011) A history of aerial photography and archaeology. Mata Hari’s glass eye and other stories. English Heritage, SwindonGoogle Scholar
  9. Bay H, Tuytelaars T, Gool L (2006) SURF: speeded up robust features. In: Aleš L, Horst B, Axel P (eds) Computer vision, 9th European conference on computer vision (ECCV 2006, Graz, Austria, May 7–13, 2006), Proceedings, part I, vol 3951, Lecture notes in computer science. Springer, Berlin, pp 404–417Google Scholar
  10. Bay H, Ess A, Tuytelaars T, van Gool L (2008) SURF: speeded up robust features. Comput Vis Image Underst 110:346–359Google Scholar
  11. Bernstein R (1983) Image geometry and rectification. In: Colwell RN, Simonett DS, Ulaby FT (eds) Manual of remote sensing, vol. 1: Theory, instruments and techniques, 2nd edn. American Society of Photogrammetry, Falls Church, pp 873–922Google Scholar
  12. Bewley R, Rączkowski W (eds) (2002) Aerial archaeology. Developing future practice, vol 337, NATO science series I: life and behavioural sciences. IOS Press, AmsterdamGoogle Scholar
  13. Bezzi L (2012) 3D documentation of small archaeological finds.  http://arc-team-open-research.blogspot.com.br/2012/08/3d-documentation-of-small.html. Accessed 11 October 2012
  14. Billingsley FC (1965) Digital video processing at JPL. In: Electronic Imaging Techniques I, vol 15. SPIE, BellinghamGoogle Scholar
  15. Billingsley FC, Anuta PE, Carr JL, McGillem CD, Smith DM, Strand TC (1983) Data processing and reprocessing. In: Colwell RN, Simonett DS, Ulaby FT (eds) Manual of remote sensing, vol. 1: Theory, instruments and techniques, 2nd edn. American Society of Photogrammetry, Falls Church, pp 719–792Google Scholar
  16. Bradley D, Boubekeur T, Heidrich W (2008) Accurate multi-view reconstruction using robust binocular stereo and surface meshing. In: CVPR 2008. IEEE conference on computer vision and pattern recognition, 23–28 June 2008. IEEE, Anchorage, pp 1–8. doi: 10.1109/CVPR.2008.4587792
  17. Braun J (2003) Aspects on true-orthophoto production. In: Fritsch D (ed) Photogrammetric week ‘03. Wichmann Verlag, Heidelberg, pp 205–214Google Scholar
  18. Brophy K, Cowley D (eds) (2005) From the air. Understanding aerial archaeology. Tempus, StroudGoogle Scholar
  19. Brown DC (1966) Decentering distortion of lenses: the prism effect encountered in metric cameras can be overcome through analytic calibration. Photogramm Eng Remote Sens 32:444–462Google Scholar
  20. Brown DC (1956) The simultaneous determination of the orientation and lens distortion of a photogrammetric camera. Air Force Missile Test Center Technical Report 56–20. FloridaGoogle Scholar
  21. Brugioni DA (1989) The serendipity effect of aerial reconnaissance. Interdiscip Sci Rev 14:16–28. doi: 10.1179/030801889789798357 Google Scholar
  22. Buchanan T (1993) Photogrammetry and projective geometry: an historical survey. In: Integrating photogrammetric techniques with scene analysis and machine vision, Orlando, FL, USA, 11 Apr 1993. SPIE, Bellingham, pp 82–91. doi:10.1117/12.155817Google Scholar
  23. Burnside CD (1985) Mapping from aerial photographs, 2nd edn. Collins, LondonGoogle Scholar
  24. Castrianni L (2008) Giacomo Boni: a pioneer of the archaeological aerial photography. In: Remote sensing for archaeology and cultural heritage management: proceedings of the 1st international EARSeL workshop, CNR, Rome, Arracne, Rome, September 30–October 4, 2008, pp 55–58Google Scholar
  25. Coleman S (2007) Taking advantage: vertical aerial photographs commissioned for local authorities. In: Mills J, Palmer R (eds) Populating clay landscapes. Tempus, Stroud, pp 28–33Google Scholar
  26. Colwell RN (1997) History and place of photographic interpretation. In: Philipson WR (ed) Manual of photographic interpretation, 2nd edn. American Society of Photogrammetry and Remote Sensing, Bethesda, pp 3–47Google Scholar
  27. Cowley DC, Stichelbaut BB (2012) Historic aerial photographic archives for European archaeology. Eur J Archaeol 15:217–236. doi: 10.1179/1461957112Y.0000000010 Google Scholar
  28. Cowley D, Standring RA, Abicht MJ (eds) (2010) Landscapes through the lens. Aerial photographs and historic environment, vol 2, Occasional publication of the Aerial Archaeology Research Group. Oxbow Books, Oxford/OakvilleGoogle Scholar
  29. Cowley DC, Ferguson LM, Allan W (2013) The aerial reconnaissance archives: a global aerial photographic collection. In: Hanson WS, Oltean IA (eds) Archaeology from historical aerial and satellite archives. Springer, New York, pp 13–30Google Scholar
  30. Crawford OGS (1924) Air survey and archaeology, vol 7, Ordnance survey professional papers, New series. Ordnance Survey, SouthamptonGoogle Scholar
  31. Crawford OGS (1929) Air photographs of the Middle East: a paper read at the evening meeting of the Society on 18 March 1929. Geogr J 73:497–509Google Scholar
  32. Crawford OGS (1933) Some recent air discoveries. Antiquity 7:290–296Google Scholar
  33. Crawford OGS, Keiller A (1928) Wessex from the air. Oxford University Press, OxfordGoogle Scholar
  34. Crawshaw A (1995) Oblique aerial photography: aircraft, cameras and films. In: Kunow J (ed) Luftbildarchäologie in Ost- und Mitteleuropa/Aerial archaeoloy in Eastern and Central Europe: internationales symposium, Kleinmachnow, Land Brandenburg, 26–30, September 1994, vol 3, Forschungen zur Archäologie im Land Brandenburg. Verlag Brandenburgisches Landesmuseum für Ur- und Frühgeschichte, Potsdam, pp 67–76Google Scholar
  35. Crawshaw A (1997) Letter. AARGnews 14:59Google Scholar
  36. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Computer Society conference on computer vision and pattern recognition, San Diego, CA, USA, 20–25 June 2005. IEEE Computer Society, Los Alamitos, pp 886–893. doi: 10.1109/CVPR.2005.177
  37. Deng H, Wei Zhang, Mortensen E, Dietterich T, Shapiro L (2007) Principal curvature-based region detector for object recognition. In: Proceedings of the 2007 IEEE conference on computer vision and pattern recognition CVPR ‘07, Minneapolis, MN, USA, 18–23 June. IEEE, Piscataway, pp 1–8. doi: 10.1109/CVPR.2007.382972
  38. Dickinson GC (1969) Maps and air photographs. Edward Arnold, LondonGoogle Scholar
  39. Doneus M (1997) On the archaeological use of vertical photographs. AARGnews 15:23–27Google Scholar
  40. Doneus M (2000) Vertical and oblique photographs. AARGnews 20:33–39Google Scholar
  41. Doneus M, Eder-Hinterleitner A, Neubauer W (2001) Archaeological prospection in Austria. In: Archaeological prospection: fourth international conference on archaeological prospection, Vienna, 19–23 Sept 2001. Austrian Academy of Sciences, Vienna, pp 11–33Google Scholar
  42. Doneus M, Briese C, Fera M, Fornwagner U, Griebl M, Janner M, Zingerle M-C (2007) Documentation and analysis of archaeological sites using aerial reconnaissance and airborne laser scanning. In: Anticipating the future of the cultural past: proceedings of the XXI international CIPA symposium, Athens, Greece, 1–6 Oct 2007, The ISPRS international archives of the photogrammetry, remote sensing and spatial information sciences. CIPA, Athens, vol XXXVI-5/C53, pp 275–280. ISSN 1682–1750Google Scholar
  43. Doneus M, Verhoeven G, Fera M, Briese C, Kucera M, Neubauer W (2011) From deposit to point cloud: a study of low-cost computer vision approaches for the straightforward documentation of archaeological excavations. In: Geoinformatics 6, XXIIIrd international CIPA Symposium, pp 81–88Google Scholar
  44. Eisenbeiss H (2009) UAV photogrammetry. PhD thesis, ETH Zürich, Zürich. http://e-collection.library.ethz.ch/eserv/eth:498/eth-498-02.pdf#search=%22%28author:henri%20eisenbeiss%29%22. Accessed 11 Feb 2013
  45. Eisenbeiss H, Sauerbier M (2011) Investigation of UAV systems and flight modes for photogrammetric applications. Photogramm Rec 26:400–421. doi: 10.1111/j.1477-9730.2011.00657.x Google Scholar
  46. Eisenbeiss H, Sauerbier M, Zhang L, Grün A (2005) Mit dem Modellhelikopter über Pinchango Alto. Geomat Schweiz 9:510–515Google Scholar
  47. El-Hakim, SF, Beraldin J-A, Picard M (2003) Effective 3D modeling of heritage sites. In: Proceedings of the 4th international conference 3-D digital imaging and modeling, Banff, Canada, 6–10 October. IEEE Computer Society Press, Los Alamitos, pp 302–309Google Scholar
  48. Estes JE, Hajic EJ, Tinney LR, Carver LG, Cosentino MJ, Mertz FC, Pazner MI, Ritter LR, Sailer CT, Stow DA, Streich TA, Woodcock CE (1983) Fundamentals of image analysis: analysis of visible and thermal infrared data. In: Colwell RN, Simonett DS, Ulaby FT (eds) Manual of remote sensing, vol. 1: Theory, instruments and techniques, 2nd edn. American Society of Photogrammetry, Falls Church, pp 987–1124Google Scholar
  49. Falkner E, Morgan D (2002) Aerial mapping. Methods and applications, 2nd edn, Mapping sciences series. Lewis, Boca RatonGoogle Scholar
  50. Faugeras O, Luong Q-T, Papadopoulo T (2001) The geometry of multiple images. The laws that govern the formation of multiple images of a scene and some of their applications. MIT Press, CambridgeGoogle Scholar
  51. Federal Geographic Data Committee – Subcommittee for Base Cartographic Data (1998) Geospatial positioning accuracy standards. Part 3: National Standard for Spatial Data Accuracy (FGDC-STD-007.3-1998). Federal Geographic Data Committee, RestonGoogle Scholar
  52. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24:381–395. doi: 10.1145/358669.358692 Google Scholar
  53. Fisher RB, Dawson-Howe K, Fitzgibbon A, Robertson C, Trucco E (2005) Dictionary of computer vision and image processing. Wiley, ChichesterGoogle Scholar
  54. Forte M, Dell’unto N, Issavi J, Onsurez L, Lercari N (2012) 3D archaeology at Çatalhöyük. Int J Herit Digit Era 1:352–378. doi: 10.1260/2047-4970.1.3.351 Google Scholar
  55. Furukawa Y, Ponce J (2010) Accurate, dense, and robust multiview stereopsis. IEEE Trans Pattern Anal Mach Intell 32:1362–1376. doi: 10.1109/TPAMI.2009.161 Google Scholar
  56. Goesele M, Curless B, Seitz SM (2006) Multi-view stereo revisited. In: Proceedings of the 2006 IEEE Computer Society conference on computer vision and pattern recognition CVPR’06. IEEE Computer Society Press, Los Alamitos, 17–22 June 2006, vol. 2, pp 2402–2409. doi: 10.1109/CVPR.2006.199.
  57. Graham R, Koh A (2002) Digital aerial survey. Theory and practice. CRC Press/Whittles Publishing, Boca RatonGoogle Scholar
  58. Gruner H, Pestrecov K, Norton CL, Tayman WP, Washer FE (1966) Elements of photogrammetric optics. In: Thompson MM, Eller RC, Radlinski WA, Speert JL (eds) Manual of photogrammetry, vol I, 3rd edn. American Society of Photogrammetry, Falls Church, pp 67–132Google Scholar
  59. Gyer MS (1996) Methods for computing photogrammetric refraction corrections for vertical and oblique photographs. Photogramm Eng Remote Sens 62:301–310Google Scholar
  60. Habbecke M, Kobbelt L (2006) Iterative multi-view plane fitting. In: Kobbelt L, Kuhlen T, Aach T, Westerman R (eds) Proceedings of the 11th international fall workshop vision, modeling, and visualization 2006, Aachen, Germany, 22–24 Nov 2006. Akademische Verlagsgesellschaft Aka GmbH, Berlin, pp 73–80Google Scholar
  61. Hallert B (1960) Photogrammetry. Basic principles and general survey, McGraw-Hill civil engineering series. McGraw-Hill, New YorkGoogle Scholar
  62. Hanson WS, Oltean IA (eds) (2013) Archaeology from historical aerial and satellite archives. Springer, New YorkGoogle Scholar
  63. Harman WE Jr, Miller RH, Sidney Park W, Webb JP (1966) Aerial photography. In: Thompson MM, Eller RC, Radlinski WA, Speert JL (eds) Manual of photogrammetry, vol I, 3rd edn. American Society of Photogrammetry, Falls Church, pp 195–242Google Scholar
  64. Harris C, Stephens M (1988) A combined corner and edge detector. In: Proceedings of the fourth Alvey Vision conference AVC88, University of Sheffield Printing Office; Sheffield, 31 August–2 September 1988. BMVA, pp 147–151Google Scholar
  65. Hartley RI (1994) Projective reconstruction and invariants from multiple images. IEEE Trans Pattern Anal Mach Intell 16:1036–1041. doi: 10.1109/34.329005 Google Scholar
  66. Hartley RI, Mundy JL (1993) Relationship between photogrammetry and computer vision. In: SPIE (ed) Integrating photogrammetric techniques with scene analysis and machine vision, 11 Apr 1993, Orlando, FL, USA. SPIE, Bellingham, pp 92–105. doi: 10.1117/12.155818
  67. Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  68. Hassett TJ, Mullen RR, Pilonero JT, Pugh HV, Freeman J, Speert JL (1966) Aerial mosaics and photomaps. In: Thompson MM, Eller RC, Radlinski WA, Speert JL (eds) Manual of photogrammetry, vol II, 3rd edn. American Society of Photogrammetry, Falls ChurchGoogle Scholar
  69. Hirschmüller H (2008) Stereo processing by semiglobal matching and mutual information. IEEE Trans Pattern Anal Mach Intell 30:328–341. doi: 10.1109/TPAMI.2007.1166 Google Scholar
  70. Imhof RK, Doolittle RC (1966) Mapping from oblique photographs. In: Thompson MM, Eller RC, Radlinski WA, Speert JL (eds) Manual of photogrammetry, vol II, 3rd edn. American Society of Photogrammetry, Falls Church, pp 875–917Google Scholar
  71. Juan L, Gwon O (2009) A comparison of SIFT, PCA-SIFT and SURF. Int J Image Process 3:143–152Google Scholar
  72. Jurie F, Schmid C (2004) Scale-invariant shape features for recognition of object categories. In: Proceedings of the 2004 IEEE Computer Society conference on computer vision and pattern recognition, CVPR 2004. IEEE Computer Society Press, Los Alamitos, 27 June–2 July, vol. 2, pp 90–96. doi: 10.1109/CVPR.2004.1315149
  73. Kadir T, Brady M (2001) Saliency, scale and image description. Int J Comput Vis 45:83–105. doi: 10.1023/A:1012460413855 Google Scholar
  74. Kennedy D (1996) Aerial archaeology in the Middle East. AARGnews 12:11–15Google Scholar
  75. Kersten TP, Lindstaedt M (2012) Potential of automatic 3D object reconstruction from multiple images for applications in architecture, cultural heritage and archaeology. Int J Herit Digit Era 1:399–420. doi: 10.1260/2047-4970.1.3.399 Google Scholar
  76. Kraus K (2002) Zur Orthophoto-Terminologie. Photogramm Fernerkund Geoinf 6:451–452Google Scholar
  77. Kraus K (2007) Photogrammetry. Geometry from images and laser scans, 2nd edn. Walter de Gruyter, Berlin-New YorkGoogle Scholar
  78. Krijnen F (2008) A fresh look at aerial photography. http://www.aircatcher.com
  79. Lerma JL, Navarro S, Cabrelles M, Seguí AE, Haddad N, Akasheh T (2011) Integration of laser scanning and imagery for photorealistic 3D architectural documentation. In: Wang C-C (ed) Laser scanning, theory and applications. InTech, Shanghai, pp 413–430Google Scholar
  80. Lhuillier M, Quan L (2005) A quasi-dense approach to surface reconstruction from uncalibrated images. IEEE Trans Pattern Anal Mach Intell 27:418–433. doi: 10.1109/TPAMI.2005.44 Google Scholar
  81. Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vis 30:79–116. doi: 10.1023/A:1008045108935 Google Scholar
  82. Lo Brutto M, Meli P (2012) Computer vision tools for 3D modelling in archaeology. Int J Herit Digit Era 1:1–6. doi: 10.1260/2047-4970.1.0.1 Google Scholar
  83. Lo Brutto M, Borruso A, D’Argenio A (2012) UAV systems for photogrammetric data acquisition of archaeological sites. Int J Herit Digit Era 1:7–14. doi: 10.1260/2047-4970.1.0.7 Google Scholar
  84. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110. doi: 10.1023/B:VISI.0000029664.99615.94 Google Scholar
  85. Ludvigsen M, Eustice R, Singh H (2006) Photogrammetric models for marine archaeology. In: Proceedings of the IEEE/MTS OCEANS’06 conference and exhibition, Boston, MA, 18–21 Sept 2006. IEEE, Piscataway, pp 1–6. doi:10.1109/OCEANS.2006.306915Google Scholar
  86. Manzer G (1996) Avoiding digital orthophoto problems. In: Greve C (ed) Digital photogrammetry: an addendum to the manual of photogrammetry. American Society of Photogrammetry and Remote Sensing, Falls Church, pp 158–162Google Scholar
  87. Matas J, Chum O, Urban M, Pajdla T (2004) Robust wide-baseline stereo from maximally stable extremal regions. Image Vis Comput 22:761–767. doi: 10.1016/j.imavis.2004.02.006 Google Scholar
  88. Mellor JP, Teller S, Lozano-Pérez T (1996) Dense depth maps from epipolar images, vol 1953, AI Lab technical memo. Massachusetts Institute of Technology/Artificial Intelligence Laboratory, CambridgeGoogle Scholar
  89. Microdrones GmbH (2008) Key Information for md4-1000  http://www.microdrones.com/products/md4-1000/md4-1000-key-information.php. Accessed 21 April 2008
  90. Microsoft Corporation (2010) Photosynth. Microsoft Corporation, Redmond,  http://photosynth.net/
  91. Mikhail EM, Bethel JS, Chris McGlone J (2001) Introduction to modern photogrammetry. Wiley, New YorkGoogle Scholar
  92. Mikolajczyk K, Schmid C (2003) A performance evaluation of local descriptors. In: Proceedings of the 2003 IEEE Computer Society conference on computer vision and pattern recognition, CVPR 2003, Madison, WI, USA, 16–22 June 2003, vol. 2. IEEE Computer Society, Los Alamitos, pp 257–263. doi: 10.1109/CVPR.2003.1211478
  93. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27:1615–1630. doi: 10.1109/TPAMI.2005.188 Google Scholar
  94. Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, van Gool L (2005) A comparison of affine region detectors. Int J Comput Vis 65:43–72Google Scholar
  95. Mills J (2005) Bias and the world of the vertical aerial photograph. In: Brophy K, Cowley D (eds) From the air: understanding aerial archaeology. Tempus, Stroud, pp 117–126Google Scholar
  96. Moisan L, Stival B (2004) A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. Int J Comput Vis 57:201–218. doi: 10.1023/B:VISI.0000013094.38752.54 Google Scholar
  97. Moons T, van Gool L, Vergauwen M (2008) 3D Reconstruction from multiple images, part 1: Principles. Found Trends Comput Graph Vis 4:287–404. doi: 10.1561/0600000007 Google Scholar
  98. Moreels P, Perona P (2007) Evaluation of features detectors and descriptors based on 3D objects. Int J Comput Vis 73:263–284. doi: 10.1007/s11263-006-9967-1 Google Scholar
  99. Morel J-M, Guoshen Yu (2009) ASIFT: a new framework for fully affine invariant image comparison. SIAM J Imaging Sci 2:438–469. doi: 10.1137/080732730 Google Scholar
  100. Moscatelli U (1985) Municipi romani della V regio Augustea: problemi storici ed urbanistici del Piceno centro-settentrionale (III – I sec. a.C.). PICUS Studi e ricerche sulle Marche nell’antichità 5:51–97Google Scholar
  101. Moscatelli U (1987) Materiali per la topografia storica di Potentia. In: Paci G (ed) Miscellanea di studi marchigiani in onore di Febo Allevi. Facoltà di Lettere e Filosofia/Università di Macerata, Agugliano, pp 429–438Google Scholar
  102. Mundy JL, Zisserman A (1992) Appendix – projective geometry for machine vision. In: Mundy JL, Zisserman A (eds) Geometric invariance in computer vision. MIT Press, Cambridge, pp 463–534Google Scholar
  103. Newhall B (2006) The history of photography. From 1839 to the present, 5th edn. Museum of Modern Art, New York/BostonGoogle Scholar
  104. Norton PR (2010) Photodetectors. In: Bass M, DeCusatis CM, Enoch JM, Lakshminarayanan V, Li G, MacDonald CA, Mahajan VN, van Stryland EW (eds) Handbook of optics, vol. II. Design, fabrication, and testing; sources and detectors; radiometry and photometry, 3rd edn. McGraw-Hill, New York, pp 24.3–24.102Google Scholar
  105. Ohno Y (2006) Basic concepts in photometry, radiometry and colorimetry. In: Dakin JP, Brown RGW (eds) Handbook of optoelectronics. Taylor & Francis, Boca Raton, pp 287–305Google Scholar
  106. Opitz R, Nowlin J (2012) Photogrammetric modeling + GIS: better methods for working with mesh data. ArcUser Spring:46–49Google Scholar
  107. Palmer R (1996) Editorial. AARGnews 13:3Google Scholar
  108. Palmer R (2005) If they used their own photographs they would not take them like that. In: Brophy K, Cowley D (eds) From the air: understanding aerial archaeology. Tempus, Stroud, pp 94–116Google Scholar
  109. Palmer R (2007) Seventy-five years v. Ninety minutes: implications of the 1996 Bedfordshire vertical aerial survey on our perceptions of clayland archaeology. In: Mills J, Palmer R (eds) Populating clay landscapes. Tempus, Stroud, pp 88–103Google Scholar
  110. Palmer JM, Grant BG (2010) The art of radiometry. SPIE, BellinghamGoogle Scholar
  111. Pollefeys M, van Gool L, Vergauwen M, Cornelis K, Verbiest F, Tops J (2001) Image-based 3D acquisition of archaeological heritage and applications. In: Proceedings of the 2001 conference on virtual reality, archaeology, and cultural heritage, Glyfada, Greece, 28–30 Nov 2001. Association for Computing Machinery, New York, pp 255–262Google Scholar
  112. Pollefeys M, van Gool L (2002) Visual modelling: from images to images. J Vis Comput Animat 13:199–209. doi: 10.1002/vis.289 Google Scholar
  113. Pollefeys M, Koch R, Vergauwen M, van Gool L (1998) Virtualizing archaeological sites. In Proceedings of the 4th international conference on virtual systems and multimedia, VSMM 98, Gifu, Japan, 18–20 Nov 1998. IOS Press, AmsterdamGoogle Scholar
  114. Pollefeys M, Koch R, Vergauwen M, van Gool L (2000) Automated reconstruction of 3D scenes from sequences of images. ISPRS J Photogramm Remote Sens 55:251–267. doi: 10.1016/S0924-2716(00)00023-X Google Scholar
  115. Pollefeys M, van Gool L, Vergauwen M, Cornelis K, Verbiest F, Tops J (2003) 3D recording for archaeological fieldwork. IEEE Comput Graph Appl 23:20–27. doi: 10.1109/MCG.2003.1198259 Google Scholar
  116. Pollefeys M, van Gool L, Vergauwen M, Verbiest F, Cornelis K, Tops J, Koch R (2004) Visual modeling with a hand-held camera. Int J Comput Vis 59:207–232. doi: 10.1023/B:VISI.0000025798.50602.3a Google Scholar
  117. Quan L (2010) Image-based modeling. Springer, New YorkGoogle Scholar
  118. Read RE, Graham R (2002) Manual of aerial survey. Primary data acquisition. CRC Press/Whittles Publishing, Boca RatonGoogle Scholar
  119. Reinhard J (2012) Things on strings and complex computer algorithms: kite aerial photography and structure from motion photogrammetry at the Tulul adh-Dhahab, Jordan. AARGnews 45:37–41Google Scholar
  120. Remondino F, Fraser C (2006) Digital camera calibration methods: considerations and comparisons. In ISPRS Commission V symposium ‘image engineering and vision metrology’, 25–27 Sept 2006. International Society for Photogrammetry and Remote Sensing, Dresden, pp 266–272Google Scholar
  121. Remondino F, Barazzetti L, Nex F, Scaioni M, Sarazzi D (2011) UAV photogrammetry for mapping and 3d modelling: current status and future perspectives. In: Proceedings of the international conference on unmanned aerial vehicle in geomatics UAV-g, Zurich, Switzerland, 14–16 Sept 2011, vol 38(1/C22). International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ZürichGoogle Scholar
  122. Remondino F, Del Pizzo S, Kersten TP, Troisi S (2012) Low-cost and open-source solutions for automated image orientation: a critical overview. In: Progress in cultural heritage preservation. In: Proceedings of the 4th international conference Euromed 2012, Lemessos, Cyprus. October 29–November 3, 2012. Springer, Berlin/Heidelberg, pp 40–54Google Scholar
  123. Robertson DP, Cipolla R (2009) Structure from motion. In: Varga M (ed) Practical image processing and computer vision. Wiley, New YorkGoogle Scholar
  124. Rosten E, Drummond T (2005) Fusing points and lines for high performance tracking. In: Proceedings of the tenth IEEE international conference on computer vision ICCV’05. IEEE Computer Society Press, Los Alamitos, 17–21 Oct 2005, vol 2, pp 1508–1515. doi:10.1109/ICCV.2005.104Google Scholar
  125. Rousseeuw PJ (1984) Least median of squares regression. J Am Stat Assoc 79:871–880. doi: 10.2307/2288718 Google Scholar
  126. Sarfraz MS, Hellwich O (2008) Head pose estimation in face recognition across pose scenarios. In: Proceedings of the third international conference on computer vision theory and applications VISAPP 2008, Funchal, Portugal, 22–25 Jan 2008, vol 1. INSTICC, Setúbal, pp 235–242Google Scholar
  127. Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vis 47:7–42Google Scholar
  128. Schlitz M (2004) A review of low-level aerial archaeology and its application in Australia. Aust Archaeol 59:51–58Google Scholar
  129. Schmid C, Mohr R (1996) Combining grey value invariants with local constraints for object recognition. In: Proceedings of the 1996 IEEE Computer Society conference on computer vision and pattern recognition CVPR ‘96, San Francisco, California, 18 June–20 June 1996. IEEE Computer Society Press, Los Alamitos, pp 872–877. doi: 10.1109/CVPR.1996.517174
  130. Schneider S (1974) Luftbild und Luftbildinterpretation, vol 11, Lehrbuch der allgemeinen Geographie. Walter de Gruyter, Berlin/New YorkGoogle Scholar
  131. Schott JR (2007) Remote sensing. The image chain approach, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  132. Schreiber WF (1967) Picture coding. Proc IEEE 55:320–330. doi: 10.1109/PROC.1967.5488 Google Scholar
  133. Scollar I, Giradeau-Montaut D (2012) Georeferenced orthophotos and DTMs from multiple oblique images. AARGnews 44:12–17Google Scholar
  134. Scollar I, Tabbagh A, Hesse A, Herzog I (1990) Archaeological prospecting and remote sensing, vol 2, Topics in remote sensing. Cambridge University Press, CambridgeGoogle Scholar
  135. Seitz SM, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison and evaluation of multi-view stereo reconstruction algorithms. In: 2006 IEEE Computer Society conference on computer vision and pattern recognition CVPR’06, vol. 1. IEEE, Washington, DC, pp 519–528Google Scholar
  136. Sevara C (2013) Top Secret Topographies: Examining the potential for recovering two and three-dimensional archaeological information from historic reconnaissance datasets using image-based modelling techniques. Inl J of Heritage in the Digital Era 2:3Google Scholar
  137. Sewell ED, Livingston RG, Quick JR, Norton CL, Case JB, Sanders RG, Goldhammer JS, Aschenbrenner B (1966) Aerial cameras. In: Thompson MM, Eller RC, Radlinski WA, Speert JL (eds) Manual of photogrammetry, vol I, 3rd edn. American Society of Photogrammetry, Falls Church, pp 133–194Google Scholar
  138. Slater PN, Doyle FJ, Fritz NL, Welch R (1983) Photographic systems for remote sensing. In: Colwell RN, Simonett DS, Ulaby FT (eds) Manual of remote sensing, vol. 1: Theory, instruments and techniques, 2nd edn. American Society of Photogrammetry, Falls Church, pp 231–291Google Scholar
  139. Smith SW (1997) The scientist and engineer’s guide to digital signal processing, 1st edn. California Technical Publishing, San DiegoGoogle Scholar
  140. Snavely N (2010) Bundler: structure from motion for unordered image collections. SoftwareGoogle Scholar
  141. Snavely N, Seitz SM, Szeliski R (2006) Photo tourism: exploring photo collections in 3D. ACM Trans Graph 25:835–846Google Scholar
  142. Spurr SH (1960) Photogrammetry and photo-interpretation. With a section on applications to forestry, 2nd edn. The Ronald Press Company, New YorkGoogle Scholar
  143. Stichelbaut B, Bourgeois J, Saunders D, Chielens P (eds) (2009) Images of conflict. Military aerial photography and archaeology. Cambridge Scholars Publishing, Newcastle upon TyneGoogle Scholar
  144. Strecha C, Fransens R, van Gool L (2006) Combined depth and outlier estimation in multi-view stereo. In: Proceedings of the 2006 IEEE Computer Society conference on computer vision and pattern recognition, CVPR’06. IEEE Computer Society Press, Los Alamitos, 17–22 June 2006, vol. 2. pp 2394–2401. doi: 10.1109/CVPR.2006.78
  145. Szeliski R (2011) Computer vision. Algorithms and applications, Texts in computer science. Springer, New YorkGoogle Scholar
  146. Taelman D, Deprez S, Vermeulen F, De Dapper M (2009) Granite and rock crystal quarrying in the Civitas Ammaiensis (north-eastern Alentejo, Portugal): a geoarchaeological case study. BABesch – Bulletin Antieke Beschaving 84:171–182Google Scholar
  147. Tewinkel GC, Schmid HH, Hallert B, Rosenfield GH (1966) Basic mathematics of photogrammetry. In: Thompson MM, Eller RC, Radlinski WA, Speert JL (eds) Manual of photogrammetry, vol I, 3rd edn. American Society of Photogrammetry, Falls Church, pp 17–65Google Scholar
  148. Tingdahl D, Maarten V, van Gool L (2012) ARC3D: a public web service that turns photos into 3D models. In: Stanco F, Battiato S, Gallo G (eds) Digital imaging for cultural heritage preservation: analysis, restoration, and reconstruction of ancient artworks, Digital imaging and computer vision series. CRC Press, Boca Raton, pp 101–125Google Scholar
  149. Torr PHS (2002) Bayesian model estimation and selection for epipolar geometry and generic manifold fitting. Int J Comput Vis 50:35–61. doi: 10.1023/A:1020224303087 Google Scholar
  150. Triggs B, Mclauchlan PF, Hartley RI, Andrew F (2000) Bundle adjustment – a modern synthesis. In: Triggs B, Zisserman A, Szeliski R (eds) Vision algorithms: theory and practice: proceedings of the international workshop on vision algorithms, Corfu, Greece, September 1999, vol 1883, Lecture notes in computer science. Springer, London, pp 298–372Google Scholar
  151. Turpin RD, Ramey EH, Case JB, Coleman CG, Lynn WD, Michaelis OE (1966) Definitions of terms and symbols used in photogrammetry. In: Thompson MM, Eller RC, Radlinski WA, Speert JL (eds) Manual of photogrammetry, vol II, 3rd edn. American Society of Photogrammetry, Falls Church, pp 1125–1161Google Scholar
  152. Tuytelaars T, Mikolajczyk K (2007) Local invariant feature detectors: a survey. Found Trends Comput Graph Vis 3:177–280. doi: 10.1561/0600000017 Google Scholar
  153. Ullman S (1979) The interpretation of structure from motion. Proc R Soc B Biol Sci 203:405–426. doi: 10.1098/rspb.1979.0006 Google Scholar
  154. Verhoeven G (2008a) Exploring the edges of the unseen: an attempt to digital aerial UV photography. In: Remote sensing for archaeology and cultural heritage management: proceedings of the 1st International EARSeL workshop CNR, Rome, September 30–October 4, 2008. Aracne, Rome, pp 79–83Google Scholar
  155. Verhoeven G (2008b) Imaging the invisible using modified digital still cameras for straightforward and low-cost archaeological near-infrared photography. J Archaeol Sci 35:3087–3100. doi: 10.1016/j.jas.2008.06.012 Google Scholar
  156. Verhoeven G (2009a) Beyond conventional boundaries. New technologies, methodologies, and procedures for the benefit of aerial archaeological data acquisition and analysis. PhD thesis, Nautilus Academic Books, ZelzateGoogle Scholar
  157. Verhoeven G (2009b) Providing an archaeological bird’s-eye view: an overall picture of ground-based means to execute low-altitude aerial photography (LAAP) in archaeology. Archaeol Prospect 16:233–249. doi: 10.1002/arp.354 Google Scholar
  158. Verhoeven G (2011) Taking computer vision aloft: archaeological three-dimensional reconstructions from aerial photographs with PhotoScan. Archaeol Prospect 18:67–73. doi: 10.1002/arp.399 Google Scholar
  159. Verhoeven G (2012a) Methods of visualisation. In: Edwards HGM, Vandenabeele PV (eds) Analytical archaeometry: selected topics. Royal Society of Chemistry, Cambridge, pp 3–48Google Scholar
  160. Verhoeven G (2012b) Near-infrared aerial crop mark archaeology: from its historical use to current digital implementations. J Archaeol Method Theory 19:132–160. doi: 10.1007/s10816-011-9104-5 Google Scholar
  161. Verhoeven G (2012c) Straightforward archeological orthophotos from oblique aerial images. SPIE Newsroom. doi: 10.1117/2.1201210.004506 Google Scholar
  162. Verhoeven G, Schmitt KD (2010) An attempt to push back frontiers: digital near-ultraviolet aerial archaeology. J Archaeol Sci 37:833–845. doi: 10.1016/j.jas.2009.11.013 Google Scholar
  163. Verhoeven G, Loenders J, Vermeulen F, Docter R (2009a) Helikite aerial photography: a versatile means of unmanned, radio controlled, low-altitude aerial archaeology. Archaeol Prospect 16:125–138. doi: 10.1002/arp.353 Google Scholar
  164. Verhoeven G, Smet P, Poelman D, Vermeulen F (2009b) Spectral characterization of a digital still camera’s NIR modification to enhance archaeological observation. IEEE Trans Geosci Remote Sens 47:3456–3468. doi: 10.1109/TGRS.2009.2021431 Google Scholar
  165. Verhoeven G, Doneus M, Briese C, Vermeulen F (2012a) Mapping by matching: a computer vision-based approach to fast and accurate georeferencing of archaeological aerial photographs. J Archaeol Sci 39:2060–2070. doi: 10.1016/j.jas.2012.02.022 Google Scholar
  166. Verhoeven G, Taelman D, Vermeulen F (2012b) Computer vision-based orthophoto mapping of complex archaeological sites: the ancient quarry of Pitaranha (Portugal-Spain). Archaeometry 54:1114–1129. doi: 10.1111/j.1475-4754.2012.00667.x Google Scholar
  167. Vermeulen F (2002) The potenza valley survey (Marche). In: New developments in italian landscape archaeology: theory and methodology of field survey, land evaluation and landscape perception, pottery production and distribution. Proceedings of a three-day conference held at the University of Groningen, 13–15 Apr 2000. Archaeopress, Oxford, pp 104–106Google Scholar
  168. Vermeulen F (2004) Fotografia aerea finalizzata nelle Marche centrali: un progetto integrato. Archeologia Aerea Studi di Aerotopografia Archeologica 1:91–118Google Scholar
  169. Vermeulen F, Taelman D (2010) From cityscape to landscape in Roman Lusitania: the Municipium of Ammaia. In: Changing landscapes: the impact of Roman towns in the Western Mediterranean. Proceedings of the International Colloquium, Castelo de Vide, Marvão. 15–17 May 2008. AnteQuem, Bologna, pp 311–324Google Scholar
  170. Wells J, Wells R (2012). Kite aerial photography in the near infra-red and ultra-violet.  http://www.armadale.org.uk/phototech05.htm. Accessed 11 February 2013
  171. Whittlesey JH (1973) Balloons, ‘flying mattresses’ and photography. Expedition 15:30–39Google Scholar
  172. Wilson DR (1975) Photographic techniques in the air. In: Wilson DR (ed) Aerial reconnaissance for archaeology, vol 12, Research report series. The Council for British Archaeology, London, pp 12–31Google Scholar
  173. Wilson DR (2000) Air photo interpretation for archaeologists, 2nd edn. Tempus, StroudGoogle Scholar
  174. Wolf PR, Dewitt BA (2000) Elements of photogrammetry with applications in GIS, 3rd edn. McGraw-Hill, BostonGoogle Scholar
  175. Xu G, Jun-ichi Terai, Heung-Yeung Shum (2000) A linear algorithm for camera self-calibration, motion and structure recovery for multi-planar scenes from two perspective images. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE Computer Society Press, Los Alamitos, 13–15 June 2000, pp 474–479. doi: 10.1109/CVPR.2000.854886
  176. Yu G, Morel J-M (2011) ASIFT: an algorithm for fully affine invariant comparison. IPOL. doi: 10.5201/ipol.2011.my-asift Google Scholar
  177. Zantopp R (1995) Methode und Möglichkeiten der Luftbildarchäologie im Rheinland. In: Jürgen K (ed) Luftbildarchäologie in Ost- und Mitteleuropa/Aerial archaeology in Eastern and Central Europe: Internationales Symposium, Kleinmachnow, Land Brandenburg, 26–30 Sept 1994, vol 3, Forschungen zur Archäologie im Land Brandenburg. Verlag Brandenburgisches Landesmuseum für Ur- und Frühgeschichte, Potsdam, pp 155–163Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Geert Verhoeven
    • 1
    • 2
    • 3
    Email author
  • Christopher Sevara
    • 4
  • Wilfried Karel
    • 2
    • 5
  • Camillo Ressl
    • 5
  • Michael Doneus
    • 2
    • 3
  • Christian Briese
    • 3
    • 5
  1. 1.Department of ArchaeologyGhent UniversityGhentBelgium
  2. 2.VIAS – Vienna Institute for Archaeological ScienceUniversity of ViennaViennaAustria
  3. 3.LBI for Archaeological Prospection and Virtual ArchaeologyViennaAustria
  4. 4.Initiative College for Archaeological Prospection, VIAS – Vienna Institute for Archaeological ScienceUniversity of ViennaViennaAustria
  5. 5.Department of Geodesy and GeoinformationVienna University of TechnologyViennaAustria

Personalised recommendations