Tectonic Genealogy of a Miniature Continent

  • Monica Heilbron
  • Umberto G. CordaniEmail author
  • Fernando F. Alkmim
  • Humberto L. S. Reis
Part of the Regional Geology Reviews book series (RGR)


The São Francisco craton (SFC), although small in size, exhibits elements of some of the Earth principal evolutionary phases. Repeated cycles of granite-greenstone terrain formation recorded in the craton basement attest the high-heat tectonic regime that characterize the Archean Earth. Like in many other places of the world, these terrains amalgamated to form a coherent and stable continental mass in the Late Archean. In the course of the Paleoproterozoic, subduction-driven accretionary orogens, which incorporated island arcs and continental terranes, were added to the Archean continental nuclei. Typical of the Proterozoic plate tectonic regime, these events took place around the important 2.1 Ga age peak of juvenile crustal production. The collage of several blocks concurred to form the São Francisco paleocontinent, which always united to the Congo landmass, experienced a series of intraplate processes, such as rifting and associated bimodal magmatism during the following 1300 Ma-long period. Very likely, the São Francisco-Congo did not take part of the Columbia and Rodinia supercontinents. Later, in Ediacaran and Cambrian times, it was involved in the collage that resulted in the formation of the Gondwana Supercontinent. Driven by slab-pull subduction and collisional processes, typical of modern-type plate tectonics, the Rio Preto, Riacho do Pontal, Sergipano, Araçuaí-Ribeira and Brasilia belts surrounded and shaped the present configuration of the SFC. Finally, the SFC was separated from the Congo craton following the Brazil–Africa continental drift and the formation of the South Atlantic Ocean. This chapter explores the significance of rock assemblages and tectonic features exhibited by the miniature São Francisco continent in terms of Earth global processes.


São Francisco craton Archean Paleoproterozoic Neoproterozoic Brasiliano event 



The authors wish to acknowledge several Brazilian institutions, such as CNPq, FAPERJ, FAPESP, FAPEMIG, Petrobrás and others, for funding our research in the last three decades and also to thank Springer that brought to us such a pleasure and challenging task.


  1. Alkmim, F.F. and Martins-Neto, M.A., 2012. Proterozoic first-order sedimentary sequences of the São Francisco Craton, eastern Brazil. Mar. Pet. Geol. 33, 127–139.CrossRefGoogle Scholar
  2. Alkmim, F.F. and Marshak, S., 1998. Transamazonian Orogeny in the Southern São Francisco Craton Region, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrelátero Ferrífero. Precambrian Research, 90, 29–58Google Scholar
  3. Almeida FFM (1977) O Cráton do São Francisco. Revista Brasileira de Geociências 7(4): 349–364.Google Scholar
  4. Almeida, F.F.M. (1981) O cráton do Paramirim e suas relações com o do São Francisco. Simpósio sobre o Cráton do São Francisco e suas Faixas Marginais. Salvador, 1981. Anais da SBG-Núcleo Bahia, p.1-10.Google Scholar
  5. Babinski, M., Pedrosa-Soares, A.C., Trindade, R.I.F., Martins, M., Noce, C.M., Liu, D., 2012. Neoproterozoic glacial deposits from the Araçuaí orogen, Brazil: Age, provenance and  correlations with the São Francisco Craton and West Congo belt. Gondwana Research 21: 451–456Google Scholar
  6. Barbosa, J.S.F., Sabaté, P., 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: geodynamic features. Precambrian Research, 133:1–27.CrossRefGoogle Scholar
  7. Brito-Neves B.B. de, Campos-Neto M.C. da, Fuck R.A. (1999) From Rodinia to Western Gondwana: An approach to the Brasiliano-Pan African Cycle and orogenic collage. Episodes 22(3): 155–166.Google Scholar
  8. Brown, M. 2008. Characteristic thermal regimes of plate tectonics and their metamorphic imprint throughout Early history: When did Earth first adopt a plate tectonics mode of behaviour?. In: When Did Plate Tectonics begin on Planet Earth? GSA Special Paper 440, 97–128.Google Scholar
  9. Caby, R.1994. Precambrian Coesite from northern Mali: First record and implications for plate tectonics in the Trans-Sahara segment of the Pan-African belt. European Journal of Mineralogy 6: 235–244.CrossRefGoogle Scholar
  10. Campos Neto, M.C & Caby, R. 2004. Lower crust extrusion and terrane accretion in the Neoproterozoic nappes of southeast Brazil. Tectonics, 19, 669–687CrossRefGoogle Scholar
  11. Cawood, P.A. & Pisarewsky, A. 2006. Precambrian Plate Tectonics: Criteria and Evidence. GSA Today 16#7:4–11.Google Scholar
  12. Condie, K. C. 2000. Episodic continental growth model- Afterthoughts and extensions. Tectonophysics 322: 153–162.CrossRefGoogle Scholar
  13. Condie, K.C. & Kroener, A. 2008. When Did Plate Tectonics begin: Evidence from the geological record. In: When Did Plate Tectonics begin on Planet Earth? GSA Special Paper 440, 281–294.Google Scholar
  14. Condie, K.C., O’Neill, C., Aster, R.C. 2009. Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. Earth and Planetary Science Letters 282: 294–298.CrossRefGoogle Scholar
  15. Cordani U.G., Pimentel M.M., Araújo C.E.G., Fuck R.A. 2013. The Significance of the Transbrasiliano-Kandi Tectonic Corridor for the Amalgamation of West Gondwana. Brazilian Journal of Geology 43 (3), 583–597CrossRefGoogle Scholar
  16. Farina, F., Albert, C., Martínez-Dopico, C. Aguilar Gil, C., Moreira, H., Hippertt, J.P. Cutts, K., Alkmim, F.F., Lana, C. 2015. The Archean-Paleoproterozoic evolution of the Quadrilátero Ferrífero (Brasil)- Current models and open questions. Journal of South American Earth Sciences 68: 4–21.CrossRefGoogle Scholar
  17. Feybesse J.L, Johan V, Triboulet C, Guerrot C, Mayaga-Mikolo F, Bouchot V, Eko N’dong J. 1998. The West Central African belt: a model of 2.5–2.0 Ga accretion and two-phase orogenic evolution. Precambrian Research, 87, 161–216CrossRefGoogle Scholar
  18. Ganade de Araujo, C.E., Rubatto, D., Hermann, J., Cordani, U., Caby, R., Basei, M.A.S. 2014. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications: 5:5198:1–7Google Scholar
  19. Heilbron M, Valeriano C.M., Tassinari C.C.G., Almeida J.C.H., Tupinamba M, Siga, O., Trouw R. 2008. Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions. Geological Society of London, Special Publication 294Google Scholar
  20. Heilbron M, Duarte B.P., Valeriano C.M., Simonetti A, Machado N, Nogueira, J.R.  (2010) Evolution of reworked Paleoproterozoic basement rocks within the Ribeira belt (Neoproterozoic), SE-Brazil, based on U-Pb  geochronology: Implications for paleogeographic reconstructions of the São Francisco-Congo paleocontinent. Precambrian Research, v. 178:136–148CrossRefGoogle Scholar
  21. Komiya, T., Hayahi, M., Yurimoto, H. 2002. Intermediate-P-type Archean metamorphism of the Isua supracrustal belt: Implications for secular change of geothermal gradients at subduction zones and for Archean plate tectonics. American Journal of Science 302: 806–826.CrossRefGoogle Scholar
  22. Lana, C., Alkmim, F.F., Armstrong, R., Scholz, R., Romano, R., Nalini Jr., H.A., 2013. The ancestry and magmatic evolution of Archaean TTG rocks of the Quadrilátero Ferrífero province, southeast Brazil. Precambrian Research 231: 157–173.CrossRefGoogle Scholar
  23. Ledru, P.J., Johan, V., Milési, J. P., Teguy, M. 1994. Markers of the last stage of the Paleoproterozoic collision: Evidence for 2 Ga continent involving circum-South Atlantic provinces. Precambrian Research, 69 :169–191.CrossRefGoogle Scholar
  24. Moreira, H., Lana, C. & Nalini, H.A.Jr., 2016. The detrital zircon record of an Archaean convergent basin in the Southern São Francisco Craton, Brazil. Precambrian Research, 272, 84–99.Google Scholar
  25. Moyen, J., Stevens, G., Kisters, A. 2006. Record of mid-Archean subduction from metamorphism in the Barbeton terrain, South Africa. Nature 442:559–562CrossRefGoogle Scholar
  26. Nance, R.D. & Murphy, J. B. 2013. Origins of supercontinent cycle. Geoscience Frontiers 4(4): 439–448.CrossRefGoogle Scholar
  27. Nance R.D., Murphy J.B., Santosh M. 2013. The supercontinent cycle: A retrospective essay: Gondwana Research, 25: 4–29.CrossRefGoogle Scholar
  28. Noce, C; Pedrosa-Soares, A.C.;  Silva, L.C; Armstrong, R; Piuzana, D 2007. Evolution of polycyclic basement complexes in the Araçuaí Orogen, based on U-Pb  SHRIMP data: Implications for Brazil Africa links in Paleoproterozoic time?. Precambrian Research 159: 60–78, 2007.Google Scholar
  29.  Rogers, J.J.W. & Santosh, M. 2004. Continents and supercontinents. Oxford Press, New York, 289p.Google Scholar
  30. Parkinson, C.D., Motoki, A., Onishi, C.T., Maruyama, S. 2001. Ultrahigh-pressure pyrope-kyanite granulites and associated eclogites in Neoproterozoic nappes of southeast Brazil. UHPM Workshop, Waseda University, Japan. Extended Abstract, 87-90.Google Scholar
  31. Rogers, J.J.W. & Santosh, M., 2009. Tectonics and surface effects of the supercontinent Columbia. Gondwana Research 15, 373–380.CrossRefGoogle Scholar
  32. Stern, R.J. 2005. Evidence from ophiolites, blueschists and ultrahigh metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology 33:557–560.CrossRefGoogle Scholar
  33. Tarney, J., Weaver, B., Drury, S.A. 1979. Geochemistry of Archean trondhjemitic and tonalitic gneisses from Scotland and Greenland: In Barker, F. ed, Trondhjemites, dacites and related rocks. Elsevier: 275–299.Google Scholar
  34. Teixeira W, Ávila, C.A., Dussin, I.A., Corrêa Neto, A.V., Bongiolo, E.M., Santos, J.O.S., Barbosa, N. 2014. Zircon U-Pb-Hf, Nd-Sr constraints and geochemistry of the Resende Costa orthogneiss  and coeval rocks: new clues for a juvenile accretion episode (2.36–2.33 Ga) in the Mineiro belt and its role to the long-lived Minas accretionary orogeny. Precambrian Research, 256: 148–169CrossRefGoogle Scholar
  35. Teles, G., Chemale Jr., F., Oliveira, C.G. 2015. Paleoarchean record of the detrital pyrite-bearing Jacobina Au–U deposits, Bahia, Brazil. Precambrian Research 256 (2015) 289–313CrossRefGoogle Scholar
  36. Tohver, E., D’Agrella-Filho, M.S., Trindade, I.F., 2006. Paleomagnetic record of Africa and South America for the 1200–500 Ma interval, and evaluation of Rodinia and Gondwana assemblies. Precambrian Research 147, 193-222.CrossRefGoogle Scholar
  37. Trouw R.A.J., Peternel R., Ribeiro, A., Heilbron, M., Vinagre, R., Duffles, P., Trouw, C.C., Fontainha, M., Kussama, H.H. 2013. A New Interpretation for the Interference Zone between the southern Brasília belt and the central Ribeira belt, SE Brazil. Journal of South American Earth Sciences 48: 43–57CrossRefGoogle Scholar
  38. Zhao, G. C., Sun, M., Wilde, S.A. 2004. A paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth Science Reviews 67:91–123.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Monica Heilbron
    • 1
  • Umberto G. Cordani
    • 2
    Email author
  • Fernando F. Alkmim
    • 3
  • Humberto L. S. Reis
    • 4
  1. 1.Tektos Research Group, Faculdade de GeologiaUniversidade do Estado Rio de Janeiro (UERJ)Rio de JaneiroBrazil
  2. 2.Instituto de GeociênciasUniversidade de São PauloSão PauloBrazil
  3. 3.Departamento de Geologia, Escola de MinasUniversidade Federal de Ouro PretoOuro PretoBrazil
  4. 4.Laboratório de Estudos Tectônicos (LESTE)/Núcleo de Geociências e Instituto de Ciência e TecnologiaUniversidade Federal dos Vales do Jequitinhonha e MucuriDiamantinaBrazil

Personalised recommendations