Advertisement

The Paleomagnetic Record of the São Francisco-Congo Craton

  • Manoel S. D’Agrella-FilhoEmail author
  • Umberto G. Cordani
Chapter
Part of the Regional Geology Reviews book series (RGR)

Abstract

This chapter, based on paleomagnetic and geologic-geochronological evidence, discusses the position of the São Francisco craton and other South American and African cratonic blocks within paleo-continents, since the formation of Columbia supercontinent in the Paleoproterozoic up to the fragmentation of Pangea in the Mesozoic. In Paleoproterozoic times, between ca. 2.0 and 1.8 Ga, two large independent landmasses were formed. The first one involved several cratonic blocks that were leading to the formation of Laurentia. Later, Laurentia, proto-Amazonia, West Africa and Baltica amalgamated to form the nucleus of the supercontinent Columbia at about 1.78 Ga. The second landmass encompassed the São Francisco-Congo, Kalahari, Rio de la Plata and Borborema-Trans-Sahara, forming the Central African block. For the São Francisco-Congo and Kalahari cratons, two robust Paleoproterozoic poles are available. One is from the Jequié charnockites of Bahia (São Francisco Craton), and the other from the Limpopo high-grade metamorphics in South Africa (Kalahari Craton). They support the possible link between these two cratonic blocks at ca. 2.0 Ga. Columbia may have remained united until 1.25 Ga, when Baltica and Amazonia/West Africa broke apart. Their paleomagnetic record seems to indicate that both executed clockwise rotations, until they collided with Laurentia along the Grenville belt at ca. 1.0 Ga., culminating with the formation of Rodinia. For the Central African block, however, there are no reliable paleomagnetic poles available between 1.78 and 1.27 MA. Nevertheless, during this time interval, the geological-geochronological evidence indicates that no continental collisional episodes affected the São Francisco-Congo craton, where important intra-plate tectonic episodes occurred. Most probably, this large continental block drifted alone since the end of the Paleoproterozoic and did not take part of Columbia or Rodinia. At the end of the Mesoproterozoic, ca. 1100 MA, the robust Umkondo pole of the Kalahari craton, as part of the Central African block, and the equally robust Keweenawan pole of Laurentia at the center of Rodinia, indicated that these landmasses were very far apart. At that time a large oceanic realm, the Goiás-Pharusian Ocean, was indeed separating Amazonia-West Africa from the Central African block. This ocean closed by a continued subduction process that started at ca. 900 MA and ended in a collisional belt with Himalayan-type mountains at ca. 615 MA, as part of the few continental collisions which formed Gondwana. However, the age of the final convergence is still a matter of debate, because paleomagnetic measurements for the Araras Group, which occurs within the Paraguay belt at the eastern margin of the Amazonian craton, would indicate that a large ocean was still in existence between it and São Francisco craton close to the Ediacaran/Cambrian boundary. Consensus about this matter awaits for further paleomagnetic data. Gondwana collided with Laurasia during the late Paleozoic, at about 300 Ma, originating Pangea, which not much later started splitting apart, near the Permian/Triassic boundary. As part of this present-time plate tectonic regime, the São Francisco Craton (in South America) started separation from the Congo craton (in Africa) in Jurassic times, giving rise of the present-day oceanic lithosphere of the Atlantic Ocean.

Keywords

São Francisco Craton Paleomagnetism Supercontinents 

Notes

Acknowledgments

We thank Fernando F. Alkmim for its helpful comments on the text.

References

  1. Almeida, F.F.M., Black, R., 1968. Geological comparison of northeastern South America and western Africa. Anais da Academia Brasileira de Ciências, Rio de Janeiro, Brazil, 40 (supplement), 317–319.Google Scholar
  2. Berger, G.W., York, D., Dunlop, D.J., 1979. Calibration of Grenvillian paleopoles by 40Ar-39Ar dating. Nature 277, 46–48.Google Scholar
  3. Bispo-Santos, F., D’Agrella-Filho, M.S., Janikian, L., Reis, N.J., Reis, M.A.A.A. Trindade, R.I.F., 2014a. Towards Columbia: Paleomagnetism of 1980–1960 Ma Surumu volcanic rocks, Northern Amazonian Craton. Precambrian Research 244, 123–138.Google Scholar
  4. Bispo-Santos, F., D’Agrella-Filho, M.S., Trindade, R.I.F., Janikian, L., Reis, N.J., 2014b. Was there SAMBA in Columbia? Paleomagnetic evidence from 1790 Ma Avanavero mafic sills (Northern Amazonian craton). Precambrian Research 244, 139–155.Google Scholar
  5. Bogdanova, S.V., Gintov, O.B., Kurlovich, D.M., Lubnina, N.V., Nilsson, M.K.M., Orlyuk, M.I.O., Pashkevich, I.K., Shumlyanskyy, L.V., Starostenko, V.I., 2013. Late Palaeoproterozoic mafic dyking in the Ukranian Shield of Volgo-Sarmatia caused by rotation during the assembly of supercontinent Columbia (Nuna). Lithos 174, 196–216.Google Scholar
  6. Buchan, K.L., Fahrig, W.F., Freda, G.N., Frith, R.A., 1983. Paleomagnetism of the Lac St-Jean anorthosite and related rocks, Grenville Province, Quebec. Canadian Journal of Earth Sciences 20, 246–258.Google Scholar
  7. Buchan, K.L., Mertanen, S., Park, R.G., Pesonen, L.J., Elming, S.-A, Abrahamsen, N. and Bylund, G., 2000. Comparing the drift of Laurentia and Baltica in the Proterozoic: the importance of key palaeomagnetic poles. Tectonophysics 319, 167–198.Google Scholar
  8. Buick, I.S., Hermann, J., Williams, I.S., Gibson, R.L., Rubatto, D., 2006. A SHRIMP U-Pb and LA-ICP-MS trace element study of the petrogenesis of garnet-cordierite-orthoamphibole gneisses from the Central Zone of the Limpopo Belt, South Africa. Lithos 88 150–172.Google Scholar
  9. Cawood, P.A., Pisarevsky, S. A., 2006. Was Baltica right-way-up or upside-down in the Neoproterozoic? Journal of the Geological Society, London. 163, 753–759.Google Scholar
  10. Cawood, P.A., McCausland, P.J.A., Dunning, G.R., 2001. Opening Iapetus: Constraints from the Laurentian margin in Newfoundland. Geological Society of American Bulletin 113, 443–453.Google Scholar
  11. Cederberg, J., Söderlund, U., Oliveira, E.P., Ernst, R.E., Pisarevsky, S.A., 2016. U-Pb baddeleyite dating of the Proterozoic Pará de Minas dyke swarm in the São Francisco craton (Brazil) – implications for the tectonic correlation with the Siberian, Congo and North China cratons. GFF 138, 219–240.Google Scholar
  12. Cordani, U.G., Teixeira, W., 2007. Proterozoic accretionary belts in the Amazonian Craton. Geological Society of American, Memoir 200, 297–320.Google Scholar
  13. Cordani, U.G., D’Agrella-Filho, M.S., Brito-Neves, B.B., Trindade, R.I.F., 2003. Tearing up Rodinia: the Neoproterozoic paleogeography of South American fragments. Terra Nova 15, 350–359.Google Scholar
  14. Cordani, U.G., Sato, K., Teixeira, W., Tassinari, C.C.G., Basei, M.A.S., 2000. Crustal evolution of the South American platform. In: Cordani, U.G., Milani, E.J., Thomaz-Filho, A., Campos, D.A. (eds.) Tectonic Evolution of South America, Rio de Janeiro, p 19–40.Google Scholar
  15. Cordani, U.G., Pimentel, M.M., Ganade de Araújo, C.E.G., Fuck, R.A., 2013a. The significance of the Transbrasiliano-Kandy tectonic corridor for the amalgamation of West Gondwana. Brazilian Journal of Geology 43, 583–597.Google Scholar
  16. Cordani, U.G., Pimentel, M.M., Ganade de Araújo, C.E., Basei, M.A.S., Fuck, R.A., Girardi, V.A.V., 2013b. Was there an Ediacaran Clymene Ocean in central South America? American Journal of Science 313, 517–539.Google Scholar
  17. Cordani, U.G., Pimentel, M.M., Ganadede de Araújo, C.E.G., Basei, M.A.S., Fuck, R.A., Girardi, V.A.V., 2014. Reply to the comment by Tohver E, Trindade RIF, on was there a Clymene ocean in central South America? 313, 517–539. American Journalof Science 314(3), 814–819.Google Scholar
  18. D’Agrella-Filho, M.S., Pacca, I.G., 1998. Paleomagnetism of Paleopreterozoic mafic dyke swarm from the Uauá region, northeastern São Francisco Craton, Brazil: tectonic implications. Journal of South American Earth Sciences 11, 23–33.Google Scholar
  19. D’Agrella-Filho, M.S., Bispo-Santos, F., Trindade, R.I.F., Antonio, P.Y.J., 2016. Paleomagnetism of the Amazonian Craton and its role in paleocontinents. Brazilian Journal of Geology 46(2), 275–299. doi:  10.1590/2317-4889201520160055.
  20. D’Agrella-Filho, M.S., Pacca, I.G., Renne, P.R., Onstott, T.C., Teixeira, W., 1990. Paleomagnetism of Middle Proterozoic (1.01 to 1.08 Ga) mafic dykes in southeastern Bahia State-São Francisco Craton, Brazil. Earth Planetary Science Letters 101, 332–348.Google Scholar
  21. D’Agrella-Filho, M.S., Babinski, M., Trindade, R.I.F., Van Schmus, W.R., Ernesto, E., 2000. Simultaneous remagnetization and U-Pb isotope resetting in Neoproterozoic carbonates of the São Francisco Craton, Brazil. Precambrian Research, 99, 179–196.Google Scholar
  22. D’Agrella-Filho, M.S., Pacca, I.G., Trindade, R.I.F., Teixeira, W., Raposo, M.I.B., Onstott, T.C., 2004. Paleomagnetism and 40Ar/39Ar ages of mafic dykes from Salvador (Brazil): new constraints on the São Francisco Craton APW path between 1080 and 1010 Ma. Precambrian Research 132, 55–77.Google Scholar
  23. D’Agrella-Filho, M.S., Trindade, R.I.F., Siqueira, R., Ponte-Neto, C.F., Pacca, I.G., 1998. Paleomagnetic constraints on the Rodinia Supercontinent: Implications for its Neoproterozoic break-up and the Formation of Gondwana. International Geology Review 40, 171–188.Google Scholar
  24. D’Agrella-Filho, M.S., Tohver, E., Santos, J.O.S., Elming, S-A., Trindade, R.I.F., Pacca, I.I.G., Geraldes, M.C., 2008. Direct dating of paleomagnetic results from Precambrian sediments in the Amazon craton: Evidence for Grenvillian emplacement of exotic crust in SE Appalachians of North America. Earth and Planetary Science Letters 267, 188–199.Google Scholar
  25. D’Agrella-Filho, M.S., Trindade, R.I.F., Tohver, E., Janikian, L., Teixeira, W., Hall, C., 2011. Paleomagnetism and 40Ar-39Ar geochronology of the high-grade metamorphic rocks of the Jequié block, São Francisco Craton: Atlantica, Ur and beyond. Precambrian Research 185, 183–201.Google Scholar
  26. Daly, J.S., Balagansky, V.V., Timmerman, M.J., Whitehouse, M.J., 2006. The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. In: Gee, D.G., Stephenson, R.A., (eds.) European Lithosphere Dynamics. Geological Society, London, Memoirs 32, 579–598.Google Scholar
  27. Dalziel, I.W.D., Mosher, S., Gahagan, L.M., 2000. Laurentia-Kalahari collision and the assembly of Rodinia. Journal of Geology 108, 499–513.Google Scholar
  28. De Beer, J.H., Meyer, R., 1984. Geophysical characteristics of the Namaqua-Natal Belt and its boundaries, South Africa. Journal of Geodynamics 1, 473–494.Google Scholar
  29. Domeier, M., Van der Voo, R., Torsvik, T.H., 2012. Paleomagnetism and Pangea: The road to reconciliation. Tectonophysics 514–517, 14–43.Google Scholar
  30. Eglington, B.M., 2006. Evolution of the Namaqua-Natal Belt, southern Africa – A geochronological and isotope geochemical review. Journal of African Earth Science 46, 93–111.Google Scholar
  31. Evans, D.A.D., 2009. The palaeomagnetically viable, long-lived and all inclusive Rodinia supercontinent reconstruction. In: Murphy, J.B., Keppie, J.D., Hynes, A.J. (Eds.), Ancient Orogens and Modern Analogues. Geological Society, London, Special Publication 327, 371–404.Google Scholar
  32. Evans, D.A.D., 2013. Reconstructing pre-Pangean supercontinents. GSA Bulletim 125, 1735–1751.Google Scholar
  33. Evans, D. A. D., Mitchell, R. N., 2011. Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. Geology 39, 443–446.Google Scholar
  34. Evans, D.A.D., Trindade, R.I.F., Catelani, E.L., D’Agrella-Filho, M.S., Heaman, L.M., Oliveira, E.P., Söderlund, U., Ernst, R.E., Smirnov, A.V., Salminen, J.M., 2016. Return to Rodinia? Moderate to high paleolatitude of the São Francisco/Congo craton at 920 Ma. In: Li, Z.X., Evans, D.A.D., Murphy, J.B. (eds.), Supercontinent Cycles Through Earth History. Geological Society, London, Special Publications, 424, 167–190. doi: 10.1144/SP424.1.
  35. Ganade de Araújo, C.E.G., Rubatto, D., Hermann, J., Cordani, U.G., Caby, R., Basei, M.A.S., 2014. Ediacaran 2.500-km-long synchronous deep continental subduction in the West Gondwana orogen. Nature Communications 5:5198, 1–8. Doi:  10.1038/ncomms6198.
  36. Hanson, R.E., Martin, M.W., Bowring, S.A., Munyanyiwa, H., 1998. U-Pb zircon age for the Umkondo dolerites, eastern Zimbabwe: 1.1 Ga large igneous province in southern Africa-East Antarctica and possible Rodinia correlations. Geology 26, 1143–1146.Google Scholar
  37. Hanson, R.E., Crowley, J.L., Bowring, S.A., Ramezani, J., Gose, W.A., Dalziel, W.D., Pancake, J.A., Seidel, E.K., Blenkinsop, T.G., Mukwakwami, J., 2004. Coeval large-scale magmatism in the Kalahari and Laurentian Cratons during Rodinia Assembly. Science 304, 1126–1129.Google Scholar
  38. Hou, G., Santosh, M., Qian, X., Lister, G.S., Li, J., 2008. Tectonic constraints on 1.3~1.2 Ga final breakup of Columbia supercontinent from a giant radiating dyke swarm. Gondwana Research 14, 561–566.Google Scholar
  39. Hurley, P.M., Almeida de, F.F.M., Melcher, G.C., Cordani, U.G., Rand, J.R., Kawashita, K., Vandoros, P., Pinson, W.H., Fairbairn Jr., H.W., 1967. Test of continental drift by comparison of radiometric ages. A pre-drift reconstruction shows matching geologic age provinces in West Africa and Northern Brazil. Science 157, 495–500.Google Scholar
  40. Irving, E., Park, J.K.., McGlynn, J.C., 1972. Paleomagnetism of Et-Then Group and MacEnzie diabase in Great Slave Lake area. Canadian Journal of Earth Science 9, 744–767.Google Scholar
  41. Johansson, A., 2009. Baltica, Amazonia and the SAMBA connection – 1000 million years of neighbourhood during the Proterozoic? Precambrian Research 175, 221–234.Google Scholar
  42. Johansson, A., 2014. From Rodinia to Gondwana with the ‘SAMBA’ model – a distant view from Baltica towards Amazonia and beyond. Precambrian Research 244, 226–235.Google Scholar
  43. Klein, R., Salminen, J., Mertanen, S., 2015. Baltica during the Ediacaran and Cambrian: A paleomagnetic study of Hailuoto sediments in Finland. Precambrian Research 267, 94–105.Google Scholar
  44. Kröner, A., Cordani, U.G., 2003. African and South American cratons were not part of the Rodinia supercontinent: evidence from field relationships and geochronology. Tectonophysics 375, 325–352.Google Scholar
  45. Li, Z-X., Evans, D.A.D., 2011. Late Neoproterozoic 40° intraplate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia. Geology 39, 39–42.Google Scholar
  46. Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K. and Vernikovsky, V., 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research 160, 179–210.Google Scholar
  47. Lubnina, N.V., Pisarevsky, S.A., Puchkov, V.N., Kozlov, V.I., Sergeeva, N.D., 2014. New paleomagnetic data from Late Neoproterozoic sedimentary successions in Southern Urals, Russia: implications for the Late Neoproterozoic paleogeography of the Iapetan realm. International Journal of Earth Science (Geol. Rundsch) 103, 1317–1334.Google Scholar
  48. Lubnina. N.V., Stepanova, A.V., Ernst, R.E., Nilsson, M., Söderlund, U., 2016. New U-Pb baddeleyite age, and AMS and paleomagnetic data for dolerites in the Lake Onega belonging to the 1.98–1.95 Ga regional Pechenga-Onega Large Igneous province. GFF 138(1), 54–78. doi:  10.1080/11035897.2015.1129549.
  49. McCausland, P.J.A., Hankard, F., Van der Voo, R., Hall, C.M., 2011. Ediacaran paleogeography of Laurentia: Paleomagnetism and 40Ar-39Ar geochronology of the 583 Ma Baie des Moutons syenite, Quebec. Precambrian Research 187, 58–78.Google Scholar
  50. Martin, H., 1961. The hypothesis of continental drift in the light of recente advances of geological knowledge in Brazil and in South West Africa. Geological Society of South Africa, vol. LXIV, annex. 1–47.Google Scholar
  51. Meert, J.G., Torsvik, T.H., 2003. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 375, 261–288.Google Scholar
  52. Meert, J.G., Van der Voo, R., 1997. The assembly of Gondwana (800–550 Ma). Journal of Geodynamics 23, 223–235.Google Scholar
  53. Meert, J.G., Hargraves, R.B., Van der Voo, R., Hall, C.M., Halliday, A.N., 1994. Paleomagnetic and 40Ar/39Ar studies of Late Kibaran Intrusives in Burundi, East Africa: Implications for Late Proterozoic Supercontinents. Journal of Geology 102, 621–637.Google Scholar
  54. Mitchell, R.N., Bleeker, W., Van Breemen, O., Lacheminant, T.N., Peng, P., Nilsson, M.K.M., Evans, D.A.D., 2014. Plate tectonics before 2.0 Ga: Evidence from Paleomagnetism of cratons within Supercontinent Nuna. American Journal of Sciences 314, 878–894.Google Scholar
  55. Morgan, G.E., 1985. The paleomagnetism and cooling hystory of metamorphic and igneous rocks from the Limpopo Mobile Belt, Southern Africa. Geological Society of America, Bulletim 96, 663–675.Google Scholar
  56. Nomade, S., Chen, Y., Pouclet, A., Féraud, G., Théveniaut, H., Daouda, B.Y., Vidal, M., Rigolet, C., 2003. The Guiana and the West African Shield Palaeoproterozoic grouping: new palaeomagnetic data for French Guiana and the Ivory Coast. Geophysical Journal International 154, 677–694.Google Scholar
  57. Oliveira, E.P., Silveira, E.M., Söderlund, U., Ernst, R.E., 2013. U-Pb ages and geochemistry of mafic dyke swarms from the Uauá Block, São Francisco Craton, Brazil: LIPs remnants relevant for Late Archaean break-up of a supercraton. Lithos 174, 308–322.Google Scholar
  58. Pehrsson, S.J., Eglington, B.M., Evans, D.A.D., Huston, D., Reddy, S., 2016. Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. In: Li, Z.X., Evans, D.A.D., Murphy, J.B., Supercontinent Cycles Through Earth History, Geological Society, London, Special Publications, 424, 83–94. doi:  10.1144/SP424.5.
  59. Pesonen, L.J., Elming, S.-Å., Mertanen, S., Pisarevsky, S., D’Agrella-Filho, M.S., Meert, J.G., Schmidt, P.W., Abrahamsen, N. and Bylund, G., 2003. Palaeomagnetic configuration of continents during the Proterozoic. Tectonophysics 375, 289–324.Google Scholar
  60. Pesonen, L.J., Mertanen, S., Veikkolainen, T., 2012. Paleo-Mesoproterozoic Supercontinents – A paleomagnetic view. Geophysica 47, 5–47.Google Scholar
  61. Pimentel, M.M., Fuck, R.A., Botelho, N.F., 1999. Granites and the geodynamic history of the neoproterozoic Brasília belt, Central Brazil: a review. Lithos 46, 463–483.Google Scholar
  62. Piper, J.D.A., 2010. Palaeopangea in Meso-Neoproterozoic times: The palaeomagnetic evidence and implications to continental integrity, supercontinent form and Eocambrian break-up. Journal of Geodynamics 50, 191–223.Google Scholar
  63. Pisarevsky, S.A., Bylund, G., 2006. Palaeomagnetism of 935 Ma mafic dykes in southern Sweden and implications for the Sveconorwegian Loop. Geophysical Journal International 166, 1095–1104.Google Scholar
  64. Pisarevsky, S.A., Wingate, M.T.D., MCA Powell, C., Johnson, S., Evans, D.A.D., 2003. Models of Rodinia assembly and fragmentation. In: Yoshida, M., Windley, B.F., Dasgupta, S. (Eds.), Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications 206, 35–55.Google Scholar
  65. Pisarevsky, S.A., Murphy, J.B., Cawood, P.A., Collins, A.S., 2008. Late Neoproterozoic and Early Cambrian palaeogeography: models and problems. In: Pankhurst, R.J., Trouw, R.A.J., Brito Neves, B.B., De Wit, M.J. (eds.) West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. Geological Society, London, Special Publications 294, 9–31.Google Scholar
  66. Pisarevsky, S.A., Elming, S.-Å., Pesonen, L.J., Li, Z.-X., 2014. Mesoproterozoic paleogeography: Supercontinent and beyond. Precambrian Research 244, 207–225.Google Scholar
  67. Reis, N.J., Teixeira, W., Hamilton, M.A., Bispo-Santos, F., Almeida, M.E., D’Agrella-Filho, M.S., 2013. The Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U-Pb TIMS baddeleyite, geochemical and paleomagnetic evidence. Lithos 174, 175–195.Google Scholar
  68. Renne, P.R., Onstott, T.C., D’Agrella-Filho, M.S., Pacca, I.G., Teixeira, W., 1990. 40Ar/39Ar dating of 1.0–1.1 Ga magnetizations from the São Francisco and Kalahari Cratons: tectonic implications for Pan-African and Brasiliano mobile belts. Earth and Planetary Science Letters 101, 349–366.Google Scholar
  69. Rogers, J.J.W., Santosh, M., 2009. Tectonics and surface effects of the supercontinent Columbia. Gondwana Research 15, 373–380.Google Scholar
  70. Salminen, J., Pesonen, L.J., 2007. Paleomagnetic and rock magnetic study of the Mesoproterozoic sill, Valaanisland, Russian Karelia. Precambrian Research 159, 212–230.Google Scholar
  71. Salminen, J., Pesonen, L.J., Reimold, W.U., Donadini, F., Gibson, R.L., 2009. Paleomagnetic and rock magnetic study of the Vredfort impact structure and the Johannesburg Dome, Kaapvaal Craton, South Africa - Implications for the apparent polar wander path of the Kaapvaal Craton during the Mesoproterozoic. Precambrian Research 168, 167–184.Google Scholar
  72. Schmitt R.S., Trouw R.A.J., Van Schmus W.R., Passchier C.W. 2008. Cambrian orogeny in the Ribeira belt (SE Brazil) and correlation within West Gondwana: ties that bind underwater. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (eds.), West Gondwana Pre-Cenozoic Correlations Across the South Atlantic Region. The Geological Society, London, Special Publication 294, 279–296.Google Scholar
  73. Silva, L.C. da, Armstrong, R., Delgado, I.M., Pimentel, M., Arcanjo, J.B., Melo, R.C. de, Teixeira, L.R., Jost, H., Cardoso Filho, J.M., Pereira, L.H.M., 2002. Reavaliação da evolução geológica em terrenos Pré-Cambrianos Brasileiros com base em novos dados U-Pb SHRIMP, Parte I: Limite centro-oriental do Craton do São Francisco na Bahia. Revista Brasileira de Geociências 32, 161–172.Google Scholar
  74. Smith, A.G., Hallam, A., 1970. The fit of the southern continents. Nature 225, 139.Google Scholar
  75. ST-Onge, M.R., Van Gool, J.A.M., Gerde, A.A., Scott, D.J., 2009. Correlation of Archaean and Palaeoproterozoic units between Canada and western Greenland constraining the pre-collisional upper plate accretionary history of the Trans-Hudson orogen. In: Cawood, P.A., Kröner, A. (eds.) Earth Accretionary Systems in Space and Time. The Geological Society, London, Special Puvblications 318, 193–235.Google Scholar
  76. Teixeira, W., D’Agrella-Filho, M.S., Hamilton, M.A., Ernst, R.E., Girardi, V.V., Mazzucchelli, M., Bettencourt, J.S., 2013. U-Pb baddeleyite ages and paleomagnetism of 1.79 and 1.50 Ga tholeiitic dyke swarms, and position of the Rio de La Plata Craton within the Columbia Supercontinent. Lithos 174, 157–174.Google Scholar
  77. Théveniaut, H., Delor, C., Lafon, J.M., Monié, P., Rossi, P., Lahondère, D., 2006. Paleoproterozoic (2155–1970 Ma) evolution of the Guiana Shield (Transamazonian event) in the light of new paleomagnetic data from French Guiana. Precambrian Research 150, 221–256.Google Scholar
  78. Tohver, E., Trindade, R.I.F., 2014. Comment on was there an ediacaran Clymene ocean in central South America by Cordani UG and others. American Journal of Science 314(3), 805–813.Google Scholar
  79. Tohver, E., van der Pluijm, B.A., Van der Voo, R., Rizzotto, G., Scandolara, J.E., 2002. Paleogeography of the Amazon craton at 1.2 Ga: early Grenvillian collision with the Llano segment of Laurentia. Earth and Planetary Science Letters 199, 185–200.Google Scholar
  80. Tohver, E., D’Agrella-Filho, M.S., Trindade, I.F., 2006. Paleomagnetic record of Africa and South America for the 1200–500 Ma interval, and evaluation of Rodinia and Gondwana assemblies. Precambrian Research 147, 193–222.Google Scholar
  81. Tohver, E., Trindade, R.I.F., Solum, J.G., Hall, C.M., Riccomini, C., Nogueira, A.C., 2010. Closing the Clymene ocean and bending a Brasiliano belt: Evidence for the Cambrian formation of Gondwana, southeast Amazon craton. Geology 38, 267–270.Google Scholar
  82. Trindade, R.I.F., Font, E., D’Agrella-Filho, M.S., Nogueira, A.C.R., Riccomini, C. 2003. Amazonia at low-latitude by the end of the ~600 Ma Puga glaciation. Terra Nova 15, 441–446.Google Scholar
  83. Trindade, R.I.F., D’Agrella-Filho, M.S., Babinski, M., Font, E., Brito-Neves, B.B., 2004. Paleomagnetism and geochronology of the Bebedouro cap carbonate: evidence for continental-scale Cambrian remagnetization in the São Francisco Craton, Brazil. Precambrian Research, 128, 83–103.Google Scholar
  84. Trindade, R.I.F., D’Agrella-Filho, M.S., Epof, I., Brito-Neves, B.B., 2006. Paleomagnetism of the Early Cambrian Itabaiana mafic dykes, NE Brazil, and implications for the final assembly of Gondwana and its proximity to Laurentia. Earth and Planetary Science Letters 244, 361–377.Google Scholar
  85. Trompette, R., 1994. Geology of Western Gondwana (2000–500 Ma). Pan-African-Brasiliano Aggregation of South America and Africa. A.A. Balkema, Rotterdam, Brookfield, p 366.Google Scholar
  86. Weil, A.B., Van der Voo, R., Niocaill, C.M., Meert, J.G., 1998. The Proterozoic supercontinent Rodinia: paleomagnetically derived reconstructions for 1100 to 800 Ma. Earth and Planetary Science Letters 154, 13–24.Google Scholar
  87. Xu, H., Yang, Z., Peng, P., Meert, J.G., Zhu, R., 2014. Paleo-position of the North China craton within the Supercontinent Columbia: Constraints from new paleomagnetic results. Precambrian Research 255, 276–293.Google Scholar
  88. Zhao, G., Cawood, P.A., Wilde, S.A., Sun, M., 2002. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews 59, 125–162.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Manoel S. D’Agrella-Filho
    • 1
    Email author
  • Umberto G. Cordani
    • 2
  1. 1.Instituto de Astronomia, Geofísica e Ciências AtmosféricasUniversidade de São PauloSão PauloBrazil
  2. 2.Instituto de GeociênciasUniversidade de São PauloSão PauloBrazil

Personalised recommendations