CompChem and NMR Probing Ionic Liquids

  • Francesca MocciEmail author
  • Aatto Laaksonen
  • Yong-Lei Wang
  • Giuseppe Saba
  • Adolfo Lai
  • Flaminia Cesare MarincolaEmail author
Part of the Soft and Biological Matter book series (SOBIMA)


Room temperature ionic liquids (RTILs) are salts of organic cations and, most often, inorganic anions. Their most significant difference from inorganic salts is their very much lower melting temperature, which together with their low vapor pressure, high thermal stability, and electrical conductivity make them unique both as neat liquids and as solvents. The high functionality of RTILs in a wide range of applications from Chemistry to Engineering is a result of their tunable interplay of intermolecular interactions from weak Van der Waals to strong Coulombic, in combination of being liquids at/close-to room temperature. The highly complex landscape of interactions of these organic–inorganic structures makes it challenging to study them experimentally and using computer modeling. The combination of experimental and computational techniques is thus of great importance to obtain reliable computational models of RTILs and insightful interpretation of experimental data. In this Chapter, we wish to show the readers how the combination of powerful techniques such as Nuclear Magnetic Resonance (NMR) spectroscopy and Molecular Dynamics (MD) simulations and Quantum Chemistry can be successfully used to provide a detailed and reliable picture of the structure and dynamics of RTILs. Structural information obtained from measurements of NMR chemical shift and nuclear Overhauser effect (NOE) effects can be fully interpreted from radial, spatial, and population distribution functions calculated in simulations. Dynamical information can be obtained from NMR relaxation and diffusion measurements and interpreted using the information provided by MD simulations. This is true for all types of molecular systems. However, in the case of RTILs, both in experiments and in modeling we often need to go beyond standard approaches.


Nuclear Magnetic Resonance Ionic Liquid Molecular Dynamics Simulation Electric Field Gradient Nuclear Magnetic Resonance Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.











Computational chemistry


Chemical shift anisotropy






Density functional theory


Electric field gradient






Hydrogen bond


Molecular dynamics


Molecular mechanical


N,N-dimethyl-pyrrolidinium bis(trifluoromethanesulfonyl)-imide


Mean square displacement


Nuclear overhauser effect


Nuclear magnetic resonance




Pulsed field-gradient spin-echo


Paramagnetic relaxation


Quantum mechanical


Quadrupolar relaxation


Room temperature ionic liquid


Radial distribution function


Scalar coupling


Spatial distribution function




Time correlation functions






  1. 1.
    Ramsey, N.F.: Phys. Rev. 77, 567 (1950)ADSCrossRefGoogle Scholar
  2. 2.
    Ramsey, N.F.: Phys. Rev. 78, 699–703 (1950)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Kowalewski, J., Laaksonen, A.: Theoretical parameters of NMR spectroscopy. In: Maksic, Z.B. (ed.) Theoretical Models of Chemical Bonding, vol. 3, pp 387-427. Springer Verlag (1991)Google Scholar
  4. 4.
    Odelius, M., Laaksonen, A.: Combined MD simulation—NMR relaxation studies of molecular motion and intermolecular interactions. In: Theoretical and Computational Chemistry. Molecular Dynamics, vol. 7, pp. 281–324. Elsevier Science (1999)Google Scholar
  5. 5.
    Yasaka, Y., Klein, M.L., Nakahara, M., Matubayasi, N.: J Chem Phys 136, 074508–074512 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Balevicius, V., Gdaniec, Z., Aidas, K., Tamuliene, J.: J. Phys. Chem. A 114, 5365–5371 (2010)CrossRefGoogle Scholar
  7. 7.
    Mocci, F., Laaksonen, A., Lyubartsev, A., Saba, G.: J. Phys. Chem. B 108, 16295–16302 (2004)CrossRefGoogle Scholar
  8. 8.
    Aidas, K., Ågren, H., Kongsted, J., Laaksonen, A., Mocci, F.: Phys. Chem. Chem. Phys. 15, 621–631 (2013)CrossRefGoogle Scholar
  9. 9.
    Welton, T.: Chem. Rev. 99, 2071–2083 (1999)CrossRefGoogle Scholar
  10. 10.
    Plechkova, N.V., Seddon, K.R.: Chem. Soc. Rev. 37, 123–150 (2008)CrossRefGoogle Scholar
  11. 11.
    Weingärtner, H.: Angew. Chem. Int. Ed. 47, 654–670 (2008)CrossRefGoogle Scholar
  12. 12.
    Facelli, J.C.: Concept Magn. Reson. A 20A, 42–69 (2004)CrossRefGoogle Scholar
  13. 13.
    Pople, J.A.: Proc. Royal Soc. 239, 541–549 (1957)ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Pyykkö, P.: Theor. Chem. Acc. 103, 214–216 (2000)CrossRefGoogle Scholar
  15. 15.
    Palomar, J., Ferro, V.R., Gilarranz, M.A., Rodriguez, J.J.: J. Phys. Chem. B 111, 168–180 (2007)CrossRefGoogle Scholar
  16. 16.
    Bagno, A., D’Amico, F., Saielli, G.: J. Phys. Chem. B 110, 23004–23006 (2006)CrossRefGoogle Scholar
  17. 17.
    Bagno, A., D’Amico, F., Saielli, G.: Chem. Phys. Chem. 8, 873–881 (2007)CrossRefGoogle Scholar
  18. 18.
    Chen, S., Vijayaraghavan, R., Macfarlane, D.R., Izgorodina, E.I.: J. Phys. Chem. B 117, 3186–3197 (2013)CrossRefGoogle Scholar
  19. 19.
    Abragam, A.: The Principles of Nuclear Magnetism. Oxford University Press, London (1961)Google Scholar
  20. 20.
    Carper, W.R., Wahlbeck, P.G., Antony, J.H., Mertens, D., Dölle, A., Wasserscheid, P.: Anal. Bioanal. Chem. 378, 1548–1554 (2004)CrossRefGoogle Scholar
  21. 21.
    Antony, J.H., Dölle, A., Mertens, D., Wasserscheid, P., Carper, W.R., Wahlbeck, P.G.: J. Phys. Chem. A 109, 6676–6682 (2005)CrossRefGoogle Scholar
  22. 22.
    Johnson, C.S.: Prog. Nucl. Magn. Reson. Spectrosc. 34, 203–256 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Claridge, T.D.W.: High-Resolution NMR Techniques in Organic Chemistry (Tetrahedron Organic Chemistry), 2nd edn. Elsevier, Oxford (2009)Google Scholar
  24. 24.
    Mele, A.: Chimica Oggi/Chem. Today 28, 48–55 (2010)Google Scholar
  25. 25.
    Mele, A., Tran, CD., De Paoli Lacerda, S.H.: Angew. Chem. Int. Ed. 42,4364–4366 (2003)Google Scholar
  26. 26.
    Mele, A., Roman, G., Giannone, M., Ragg, E., Fronza, G., Raos, G., Marcon, V.: Angew. Chem. Int. Ed. 45, 1123–1126 (2006)CrossRefGoogle Scholar
  27. 27.
    Cesare Marincola, F., Piras, C., Russina, O., Gontrani, L., Saba, G., Lai, A. Chem Phys Chem 13,1339–1346 (2012)Google Scholar
  28. 28.
    Chiappe, C., Sanzone, A., Mendola, D., Castiglione, F., Famulari, A., Raos, G., Mele, A.: J. Phys. Chem. B 117, 668–676 (2013)CrossRefGoogle Scholar
  29. 29.
    Katsyuba, S.a., Griaznova, T.P., Vidis, A., Dyson, P.J. J. Phys. Chem. B 113, 5046–5051 (2009)Google Scholar
  30. 30.
    Lodewyk, M.W., Siebert, M.R., Tantillo, D.J.: Chem. Rev. 112, 1839–1862 (2012)CrossRefGoogle Scholar
  31. 31.
    Fujii, K., Soejima, Y., Kyoshoin, Y., Fukuda, S., Kanzaki, R., Umebayashi, Y., Yamaguchi, T., Ishiguro, S., Takamuku, T.: J. Phys. Chem. B 112, 4329–4336 (2008)CrossRefGoogle Scholar
  32. 32.
    Remsing, R.C., Liu, Z., Sergeyev, I., Moyna, G.: J. Phys. Chem. B 112, 7363–7369 (2008)CrossRefGoogle Scholar
  33. 33.
    Moreno, M., Castiglione, F., Mele, A., Pasqui, C., Raos, G.: J. Phys. Chem. B 112, 7826–7836 (2008)CrossRefGoogle Scholar
  34. 34.
    Freire, M.G., Neves, C.M.S.S., Silva, A.M.S., Santos, L.M.N.B.F., Marrucho, I.M., Rebelo, L.P.N., Shah, J.K., Maginn, E.J., Coutinho, J.A.P.: J. Phys. Chem. B 114, 2004–2014 (2010)CrossRefGoogle Scholar
  35. 35.
    Zhang, Q.G., Wang, N.N., Wang, S.L., Yu, Z.W.: J. Phys. Chem. B 115, 11127–11136 (2011)CrossRefGoogle Scholar
  36. 36.
    Park, H., Jung, Y.M., Yang, S.H., Shin, W., Kang, J.K., Kim, H.S., Lee, H.J., Hong, W.H.: Chem. Phys. Chem. 11, 1711–1717 (2010)CrossRefGoogle Scholar
  37. 37.
    Gordon, P.G., Brouwer, D.H., Ripmeester, J.: Chem. Phys. Chem. 11, 260–268 (2010)CrossRefGoogle Scholar
  38. 38.
    Hazelbaker, E.D., Budhathoki, S., Katihar, A., Shah, J.K., Maginn, E.J., Vasenkov, S.: J. Phys. Chem. B 116, 9141–9151 (2012)CrossRefGoogle Scholar
  39. 39.
    Urahata, S.M., Ribeiro, M.C.C.: J. Chem. Phys. 122, 024511–024519 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    Han, K.S., Li, S., Hagaman, E.W., Baker, G.A., Cummings, P., Dai, S.: J. Phys. Chem. B 116, 20779–20786 (2012)Google Scholar
  41. 41.
    Yasaka, Y., Klein, M.L., Nakahara, M., Matubayasi, N.: J. Chem. Phys. 134, 191101–191104 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Kimura, H., Yasaka, Y., Nakahara, M., Matubayasi, N.: J. Chem. Phys. 137, 194503–194510 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    Bagno, A., D’Amico, F., Saielli, G.: J. Mol. Liq. 131, 17–23 (2007)CrossRefGoogle Scholar
  44. 44.
    Borodin, O., Smith, G.D.: J. Phys. Chem. B 110, 11481–11490 (2006)CrossRefGoogle Scholar
  45. 45.
    Borodin, O., Smith, G.D., Henderson, W.: J. Phys. Chem. B 110, 16879–16886 (2006)CrossRefGoogle Scholar
  46. 46.
    Nicotera, I., Oliviero, C., Henderson, W.A., Appetecchi, G.B., Passerini, S.: J. Phys. Chem. B 109, 22814–22819 (2005)CrossRefGoogle Scholar
  47. 47.
    MacFarlane, D.R., Meakin, P., Sun, J., Amini, N., Forsyth, M.: J. Phys. Chem. B 103, 4164–4170 (1999)CrossRefGoogle Scholar
  48. 48.
    Borodin, O.: J. Phys. Chem. B 113, 11463–11478 (2009)CrossRefGoogle Scholar
  49. 49.
    Borodin, O., Gorecki, W., Smith, G.D., Armand, M.: J. Phys. Chem. B 114, 6786–6798 (2010)CrossRefGoogle Scholar
  50. 50.
    Shi, W., Damodaran, K., Nulwala, H.B., Luebke, D.R.: Phys. Chem. Chem. Phys. 14, 15897–15908 (2012)CrossRefGoogle Scholar
  51. 51.
    Chiappe, C., Pomelli, C.S.: Phys. Chem. Chem. Phys. 15, 412–423 (2013)CrossRefGoogle Scholar
  52. 52.
    Mori, K., Kobayashi, T., Sakakibara, K., Ueda, K.: Chem. Phys. Lett. 552, 58–63 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    Li, Y.N., Wang, J.Q., He, L.N., Yang, Z.Z., Liu, A.H., Yu, B., Luan, C.-R.: Green Chem. 14, 2752–2758 (2012)CrossRefGoogle Scholar
  54. 54.
    Remsing, R.C., Hernandez, G., Swatloski, R.P., Massefski, W.W., Rogers, R.D., Moyna, G.: J. Phys. Chem. B 112, 11071–11078 (2008)CrossRefGoogle Scholar
  55. 55.
    Youngs, T.G., Holbrey, J.D., Deetlefs, M., Nieuwenhuyzen, M., Costa Gomes, M.F., Hardacre, C.: Chem. Phys. Chem. 7, 2279–2281 (2006)Google Scholar
  56. 56.
    Youngs, T.G.A., Holbrey, J.D., Mullan, C.L., Norman, S.E., Lagunas, M.C., D’Agostino, C., Mantle, M.D., Gladden, L.F., Bowron, D.T., Hardacre, C.: Chem. Sci. 2, 1594–1605 (2011)CrossRefGoogle Scholar
  57. 57.
    Hanke, C.G., Johannson, H., Harper, J.B., Lynden-Bell, R.R.M.: Chem. Phys. Lett. 374, 85–90 (2004)ADSCrossRefGoogle Scholar
  58. 58.
    Gutel, T., Santini, C.C., Pádua, A.A.H., Fenet, B., Chauvin, Y., Canongia Lopes, J.N., Bayard, F., Costa Gomes, M.F., Pensado, A.S.: J. Phys. Chem. B 113, 170–177 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Francesca Mocci
    • 1
    Email author
  • Aatto Laaksonen
    • 2
  • Yong-Lei Wang
    • 2
  • Giuseppe Saba
    • 1
  • Adolfo Lai
    • 1
  • Flaminia Cesare Marincola
    • 1
    Email author
  1. 1.Dipartimento di Scienze Chimiche e GeologicheUniversità di Cagliari, Cittadella Universitaria di MonserratoMonserratoItaly
  2. 2.Arrhenius Laboratory, Division of Physical Chemistry, Department of Materials and Environmental ChemistryStockholm UniversityStockholmSweden

Personalised recommendations