Response Surfaces with Discounted Information for Global Optima Tracking in Dynamic Environments

  • Sergio Morales-Enciso
  • Juergen Branke
Part of the Studies in Computational Intelligence book series (SCI, volume 512)


Two new methods for incorporating old and recent information into a surrogate model in order to improve the tracking of the global optima of expensive black boxes are presented in this paper. The response surfaces are built using Gaussian processes fitted to data which is obtained through sequential sampling. The efficient global optimization (EGO) algorithm applied to the generated response surface is used to determine the next most promising sample (where the expected improvement is maximized). The goal is to find the global maxima of an expensive to evaluate objective function which changes after a given number of function evaluations with as few samples as possible. Exploiting old information in a discounted manner significantly improves the search, which is shown through numerical experiments performed using the moving peaks benchmark (MPB).


Particle Swarm Optimization Response Surface Gaussian Process Radial Basis Function Random Sampling Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biermann, D., Weinert, K., Wagner, T.: Model-based optimization revisited: Towards real-world processes. In: IEEE Congress on Evolutionary Computation 2008, pp. 2975–2982. IEEE (2008)Google Scholar
  2. 2.
    Blackwell, T.M., Branke, J.: Multi-swarms, exclusion and anti-convergence in dynamic environments. IEEE Transactions on Evolutionary Computation 10(4), 459–472 (2004), CrossRefGoogle Scholar
  3. 3.
    Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proceedings of the Congress on Evolutionary Computation, vol. 3, pp. 1875–1882. IEEE Press (1999)Google Scholar
  4. 4.
    Branke, J., Schmeck, H.: Designing evolutionary algorithms for dynamic optimization problems. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computing. Natural Computing Series, pp. 239–262. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Burl, M.C., Wang, E.: Active learning for directed exploration of complex systems. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 89–96. ACM, New York (2009), doi:10.1145/1553374.1553386Google Scholar
  6. 6.
    Floudas, C., Gounaris, C.: A review of recent advances in global optimization. Journal of Global Optimization 45, 3–38 (2009), doi:10.1007/s10898-008-9332-8MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Hu, X., Eberhart, R.: Adaptive particle swarm optimization: detection and response to dynamic systems. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, vol. 2, pp. 1666–1670. IEEE (2002), doi:10.1109/CEC.2002.1004492Google Scholar
  8. 8.
    Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – a survey. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005), doi:10.1109/TEVC.2005.846356CrossRefGoogle Scholar
  9. 9.
    Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization 21, 345–383 (2001), doi:10.1023/A:1012771025575zbMATHCrossRefGoogle Scholar
  10. 10.
    Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. Journal of Global Optimization 13(4), 455–492 (1998),, doi:10.1023/A:1008306431147MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Morales-Enciso, S., Branke, J.: Revenue maximization through dynamic pricing under unknown market behaviour. In: Ravizza, S., Holborn, P. (eds.) 3rd Student Conference on Operational Research, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. OpenAccess Series in Informatics (OASIcs), vol. 22, pp. 11–20 (2012),, doi:
  12. 12.
    Moser, I.: All currently known publications on approaches which solve the moving peaks problem (2007)Google Scholar
  13. 13.
    Parsopoulos, K., Vrahatis, M.: Unified particle swarm optimization in dynamic environments. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 590–599. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. In: Adaptive Computation and Machine Learning. MIT Press, Cambridge (2006)Google Scholar
  15. 15.
    Richter, H.: Detecting change in dynamic fitness landscapes. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 1613–1620. IEEE (2009), doi:10.1109/CEC.2009.4983135Google Scholar
  16. 16.
    Shan, S., Wang, G.: Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Structural and Multidisciplinary Optimization 41, 219–241 (2010),, 10.1007, doi:10.1007/s00158-009-0420-2MathSciNetCrossRefGoogle Scholar
  17. 17.
    Simoes, A., Costa, E.: Improving memory’s usage in evolutionary algorithms for changing environments. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 276–283. IEEE (2007), doi:10.1109/CEC.2007.4424482Google Scholar
  18. 18.
    Tang, Y., Chen, J., Wei, J.: A surrogate-based particle swarm optimization algorithm for solving optimization problems with expensive black box functions. Engineering Optimization, 1–20 (2012), doi:10.1080/0305215X.2012.690759Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Centre for Complexity ScienceThe University of WarwickCoventryUK
  2. 2.Warwick Business SchoolThe University of WarwickCoventryUK

Personalised recommendations