Metachronal Waves in Cellular Automata: Cilia-Like Manipulation in Actuator Arrays

  • Ioannis Georgilas
  • Andrew Adamatzky
  • David Barr
  • Piotr Dudek
  • Chris Melhuish
Part of the Studies in Computational Intelligence book series (SCI, volume 512)

Abstract

Paramecium is covered by cilia. It uses the cilia to swim and transport food particles to its mouth. The cilia are synchronised into a collective action by propagating membrane potential and mechanical properties of their underlying membrane and the liquid phase environment. The cilia inspired us to design and manufacture a hardware prototype of a massively parallel actuator array, emulated membrane potentials via a discrete excitable medium controller and mechanical properties based on vibrating motors. The discrete excitable medium is a two-dimensional array of finite automata, where each automaton, or a cell, updates its state depending on states of its closest neighbours. A local interaction between the automata lead to emergence of propagating patterns, waves and gliders. The excitable medium is interfaced with an array of actuators. Patterns travelling on an automaton array manifest patterns of actuation travelling along the array of actuators. In computer models and laboratory experiments with hardware prototypes we imitate transportation of food towards mouth pore of the Paramecium. The hardware actuator arrays proposed could in future replace simple manipulators in demanding micro-scale application.

Keywords

cellular automata multi-agent systems natural collaboration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamatzky, A.: Computing in non-linear media and automata collectives. Institute of Physics Publishing (2001)Google Scholar
  2. 2.
    Aiello, E., Sleigh, M.A.: The metachronal wave of lateral cilia of mytilus edulis. The Journal of Cell Biology 54(3), 493–506 (1972)CrossRefGoogle Scholar
  3. 3.
    Barr, D.R., Dudek, P.: Apron: A cellular processor array simulation and hardware design tool. EURASIP Journal on Advances in Signal Processing, 9 (2009)Google Scholar
  4. 4.
    Bohringer, K.F., Donald, B.R., Mihailovich, R., MacDonald, N.C.: Sensorless manipulation using massively parallel microfabricated actuator arrays. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 826–833. IEEE (1994)Google Scholar
  5. 5.
    Bohringer, K.F., Bhatt, V., Donald, B., Goldberg, K.: Algorithms for sensorless manipulation using a vibrating surface. Algorithmica 26(3-4), 389–429 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, D., Norris, D., Ventikos, Y.: The active and passive ciliary motion in the embryo node: A computational fluid dynamics model. Journal of Biomechanics 42(3), 210–216 (2009), http://www.sciencedirect.com/science/article/pii/S0021929008005472, doi:10.1016/j.jbiomech.2008.10.040CrossRefGoogle Scholar
  7. 7.
    Christensen, S.T., Pedersen, L.B., Schneider, L., Satir, P.: Sensory cilia and integration of signal transduction in human health and disease. Traffic 8(2), 97–109 (2007)CrossRefGoogle Scholar
  8. 8.
    Delettre, A., Laurent, G., Le Fort-Piat, N.: 2-dof contactless distributed manipulation using superposition of induced air flows. In: 2011 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, IROS 2011, San Francisco, CA, pp. 5121–5126 (2011), doi:10.1109/IROS.2011.6048251Google Scholar
  9. 9.
    Ferber, J.: Multi-agent systems: an introduction to distributed artificial intelligence, vol. 1. Addison-Wesley, Reading (1999)Google Scholar
  10. 10.
    Fujita, H., Ataka, M.: System configuration and fabrication technology for distributed mems. In: 1st Worksh. Hardw. Softw. Impl. Contr. Distr. MEMS, dMEMS 2010, Besancon, pp. 1–5 (2010)Google Scholar
  11. 11.
    Gauger, E.M., Downton, M.T., Stark, H.: Fluid transport at low reynolds number with magnetically actuated artificial cilia. The European Physical Journal E 28(2), 231–242 (2009)CrossRefGoogle Scholar
  12. 12.
    Georgilas, I., Adamatzky, A., Melhuish, C.: Manipulating objects with gliders in cellular automata. In: 2012 IEEE International Conference on Automation Science and Engineering (CASE), pp. 936–941. IEEE (2012)Google Scholar
  13. 13.
    Georgilas, I., Adamatzky, A., Melhuish, C.: Towards an intelligent distributed conveyor. In: Herrmann, G., Studley, M., Pearson, M., Conn, A., Melhuish, C., Witkowski, M., Kim, J.-H., Vadakkepat, P. (eds.) TAROS-FIRA 2012. LNCS, vol. 7429, pp. 457–458. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Georgilas, I., Adamatzky, A., Melhuish, C.: Manipulating with excitations: Waves or gliders? In: Workshop Notes of the ICRA Workshop in Unconventional Approaches to Robotics, Automation and Control Inspired by Nature, Karlruhe, International Conference in Robotics and Automation, ICRA (2013)Google Scholar
  15. 15.
    Guirao, B., Joanny, J.F.: Spontaneous creation of macroscopic flow and metachronal waves in an array of cilia. Biophysical Journal 92(6), 1900–1917 (2007)CrossRefGoogle Scholar
  16. 16.
    Kelso, J., Schöner, G.: Toward a physical (synergetic) theory of biological coordination. In: Lasers and Synergetics, pp. 224–237. Springer (1987)Google Scholar
  17. 17.
    Kondo, S., Miura, T.: Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(5999), 1616–1620 (2010)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Konishi, S., Fujita, H.: System design for cooperative control of arrayed microactuators. In: Proceedings of the Micro Electro Mechanical Systems, MEMS 1995, p. 322. IEEE (1995)Google Scholar
  19. 19.
    Lenz, P., Ryskin, A.: Collective effects in ciliar arrays. Physical Biology 3(4), 285 (2006)CrossRefGoogle Scholar
  20. 20.
    Sareh, S., Rossiter, J., Conn, A., Drescher, K., Goldstein, R.E.: Swimming like algae: biomimetic soft artificial cilia. Journal of the Royal Society Interface 10(78) (2012)Google Scholar
  21. 21.
    Satir, P., Christensen, S.T.: Structure and function of mammalian cilia. Histochemistry and Cell Biology 129(6), 687–693 (2008)CrossRefGoogle Scholar
  22. 22.
    Vose, T., Umbanhowar, P., Lynch, K.: Toward the set of frictional velocity fields generable by 6-degree-of-freedom oscillatory motion of a rigid plate. In: 2010 IEEE Int. Conf. Robot, ICRA 2010, Anchorage, AK, pp. 540–547 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ioannis Georgilas
    • 1
    • 2
  • Andrew Adamatzky
    • 1
    • 2
  • David Barr
    • 3
  • Piotr Dudek
    • 3
  • Chris Melhuish
    • 2
  1. 1.International Centre for Unconventional ComputingUniversity of the West of EnglandBristolUK
  2. 2.Bristol Robotics LaboratoryUniversity of Bristol and University of the West of EnglandBristolUK
  3. 3.School of Electrical & Electronic EngineeringUniversity of ManchesterManchesterUK

Personalised recommendations