Seawater Desalination via Hydrogels: Practical Realisation and First Coarse Grained Simulations

  • Johannes Höpfner
  • Tobias Richter
  • Peter Košovan
  • Christian Holm
  • Manfred Wilhelm
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 140)

Abstract

We investigated and described a novel approach for water desalination using charged hydrogels under externally applied mechanical forces. The desalination mechanism is based on the unequal distribution of an added salt between gel and surrounding solution phase. We synthesised acrylic acid-based hydrogels of various compositions and investigated their desalination properties with a specifically designed experimental press setup that allowed us to control online the force respective pressure exerted on the gel and to measure the water elution from the gel bed as well as the salt concentration of the eluate. A reference sodium chloride solution was used as a model for desalination applications. The experiments were augmented with a theoretical analysis within a mean-field Donnan model that can semi-quantitatively explain the salt distribution and the desalination process. In addition we performed coarse-grained simulations with explicit ions and charged bead-spring polymers. The simulations provided reference data on well defined systems which could be directly compared with the theoretical predictions. This comparison provided valuable insights into the weak points of the mean-field theory and guidelines for its further development.

Keywords

Hydrogels Donnan equilibrium Desalination Polyelectrolytes Coarse grained simulations Absorption under load 

References

  1. 1.
    Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology, 1st edn. Wiley-VCH, New YorkGoogle Scholar
  2. 2.
    Kazanskii KS, Dubrovskii SA (1992) Adv Polym Sci 104:97CrossRefGoogle Scholar
  3. 3.
    Hogari K, Ashiya F (1994) In: Buchholz FL, Peppas NA (eds) Superabsorbent polymers science and technology. ACS symposium series, vol 573, 1st edn. American Chemical Society, Washington, DC, pp 128–140Google Scholar
  4. 4.
    Masuda F (1994) In: Buchholz FL, Peppas NA (eds) Superabsorbent polymers science and technology. ACS symposium series, vol 573, 1st edn. American Chemical Society, Washington, DC, pp 88–98Google Scholar
  5. 5.
    Wiertz P (2011) Sustainability report, 3rd edn. EDANA, BrusselsGoogle Scholar
  6. 6.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  7. 7.
    Katchalsky A, Michaeli I (1955) J Polym Sci 15:69CrossRefGoogle Scholar
  8. 8.
    Höpfner J, Klein C, Wilhelm M (2010) Macromol Rapid Commun 31:1337CrossRefGoogle Scholar
  9. 9.
    Cath TY, Childress AE, Elimelech M (2006) J Membr Sci 281:70CrossRefGoogle Scholar
  10. 10.
    Kravath RE, Davis JA (1975) Desalination 16:151CrossRefGoogle Scholar
  11. 11.
    Fritzmann C, Löwenberg J, Wintgensand T, Melin T (2007) Desalination 216:1CrossRefGoogle Scholar
  12. 12.
    Khawaji AD, Kutubkhanah IK, Wie JM (2008) Desalination 221:47CrossRefGoogle Scholar
  13. 13.
    McCutcheon JR, McGinnis RL, Elimelech M (2005) Desalination 174:1CrossRefGoogle Scholar
  14. 14.
    McGinnis RL, Elimelech M (2007) Desalination 207:370CrossRefGoogle Scholar
  15. 15.
    Li D, Zhang X, Yao J, Simon GP, Wang H (2011) Chem Commun 47:1710CrossRefGoogle Scholar
  16. 16.
    Li D, Zhang X, Yao J, Zeng Y, Simon GP, Wang H (2011) Soft Matter 7:10048–10056CrossRefGoogle Scholar
  17. 17.
    Victorov A, Radke C, Prausnitz J (2005) Phys Chem Chem Phys 8:264CrossRefGoogle Scholar
  18. 18.
    Claudio GC, Kremer K, Holm C (2009) J Chem Phys 131:094903CrossRefGoogle Scholar
  19. 19.
    Edgecombe S, Schneider S, Linse P (2004) Macromolecules 37(26):10089CrossRefGoogle Scholar
  20. 20.
    Victorov AI (2006) Fluid Phase Equilib 241:334CrossRefGoogle Scholar
  21. 21.
    Flory JP, Rehner J (1943) J Chem Phys 11:512CrossRefGoogle Scholar
  22. 22.
    Mann BA, Holm C, Kremer K (2005) J Chem Phys 122(15):154903CrossRefGoogle Scholar
  23. 23.
    Mann BA (2005) The swelling behaviour of polyelectrolyte networks. Ph.D. thesis, Johannes Gutenberg-University, MainzGoogle Scholar
  24. 24.
    Schneider S, Linse P (2002) Eur Phys J E 8:457Google Scholar
  25. 25.
    Yan Q, de Pablo JJ (2003) Phys Rev Lett 91(1):018301CrossRefGoogle Scholar
  26. 26.
    Mann BA, Everaers R, Holm C, Kremer K (2004) Europhys Lett 67(5):786CrossRefGoogle Scholar
  27. 27.
    Košovan P, Richter T, Holm C, Molecular simulations[10pt] of polymeric gelsGoogle Scholar
  28. 28.
    Stevens MJ, Kremer K (1993) Macromolecules 26:4717CrossRefGoogle Scholar
  29. 29.
    Holm C, Hofmann T, Joanny JF, Kremer K, Netz RR, Reineker P, Seidel C, Vilgis TA, Winkler RG (2004) Adv Polym Sci 166:67CrossRefGoogle Scholar
  30. 30.
    Mann BA, Holm C, Kremer K (2006) Macromol Symp 237:90CrossRefGoogle Scholar
  31. 31.
    Mann BA, Lenz O, Kremer K, Holm C (2011) Macromol Theory Simul 20:721. Cover issueGoogle Scholar
  32. 32.
    Widom B (1963) J Chem Phys 39:2802CrossRefGoogle Scholar
  33. 33.
    Truesdell AH (1968) Science 161(3844):884CrossRefGoogle Scholar
  34. 34.
    Weeks JD, Chandler D, Andersen HC (1971) J Chem Phys 54:5237CrossRefGoogle Scholar
  35. 35.
    Limbach HJ, Arnold A, Mann BA, Holm C (2006) Comput Phys Commun 174(9):704CrossRefGoogle Scholar
  36. 36.
    Arnold A, Lenz O, Kesselheim S, Weeber R, Fahrenberger F, Roehm D, Košovan P, Holm C (2013) In: Griebel M, Schweitzer MA (eds) Meshfree methods for partial differential equations VI, vol 89. Springer, Heidelberg/New York, pp 1–23CrossRefGoogle Scholar
  37. 37.
    Espresso homepage, http://www.espressomd.org
  38. 38.
    Deserno M, Holm C (1998) J Chem Phys 109:7678CrossRefGoogle Scholar
  39. 39.
    Oppermann W (1992) Swelling behavior and elastic properties of ionic hydrogels. In: Harland RS, Prud’homme RK (eds) Polyelectrolyte gels – properties, preparation, and applications, 1st edn. American Chemical Society, Washington, DC, p 159CrossRefGoogle Scholar
  40. 40.
    Umendra D, Metha SK, Choudhary MS, Jain R (1999) Rev Macromol Chem Phys C39:507Google Scholar
  41. 41.
    Vervoort S, Patlazhan S, Weyts J, Budtova T (2005) Polymer 46:121CrossRefGoogle Scholar
  42. 42.
    Brendel U (1999) Quellungsverhalten und mechanische eigenschaften von polyelektrolytnetzwerken und technischen superabsorbern. Ph.D. thesis, Johannes Gutenberg-Universität, MainzGoogle Scholar
  43. 43.
    Höpfner J (2013) A new method of seawater desalination via acrylic acid based hydrogels: synthesis, characterisation, and experimental realisation. Ph.D. thesis, Karlsruher Institut für Technologie (KIT)Google Scholar
  44. 44.
    Skoog DA, Holler FJ, Crouch SR (2007) Principles of instrumental analysis, 6th edn. Thomson, BelmontGoogle Scholar
  45. 45.
    van Dusschoten D, Wilhelm M (2001) Rheol Acta 40:395CrossRefGoogle Scholar
  46. 46.
    Horvath AL (1985) Handbook of aqueous electrolyte solutions, 1st edn. Ellis Horwood Ltd., ChichesterGoogle Scholar
  47. 47.
    Wolf AV, Brown MG, Prentiss PG (1986) In: Weast RC (ed) CRC handbook of chemistry and physics, 67th edn. CRC Press, Boca Raton, pp D–253Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Johannes Höpfner
    • 1
  • Tobias Richter
    • 2
  • Peter Košovan
    • 2
    • 3
  • Christian Holm
    • 2
  • Manfred Wilhelm
    • 1
  1. 1.Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer ChemistryKarlsruheGermany
  2. 2.Institute for Computational PhysicsUniversity of StuttgartStuttgartGermany
  3. 3.Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles University in PraguePrahaCzech Republic

Personalised recommendations