Supramolecular Chromaticity and Thermoresponsive Hydrogels: A Self-Assembly Study on Maleamic Acid-Based Amphiphiles

  • Andreas BernetEmail author
  • Marina Behr
  • Rodrigo Q. Albuquerque
  • Marko Schmidt
  • Jürgen Senker
  • Hans-Werner Schmidt
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 140)


A new class of homologous low molecular weight amphiphiles based on maleamic acid was synthesized and investigated in terms of its self-assembly behavior in bulk and in solution. The unexpected yellow color as bulk material and in organic solvents was revealed by means of spectroscopic and theoretical investigations to originate from intermolecular π-π interactions yielding supramolecular chromophores. It was found that the length of the alkyl chain of the amphiphiles and the resulting hydrophilic/lipophilic balance dictates the aggregation mode in bulk. One special compound exhibiting an n-tetradecyl chain was found to form stable thermoreversible supramolecular hydrogels in aqueous sodium hydroxide solutions. The corresponding hydrogels feature a rare cellular bilayer-based morphology and can be transferred into viscoelastic solutions upon heating and vice versa.


Bilayer Vesicle, Wormlike micelles Supramolecular chromophore 



Financial support by the German Research Foundation (DFG) in the frame of Priority Programme SPP 1259 “Intelligente Hydrogele” is gratefully acknowledged. Computational studies were carried out in the frame of Research Training Group GRK 1640 “Photophysics of Synthetic and Biological Multichromophoric Systems”. We thank M. Bieligmeyer, M. Schieder, C. Stelling, N. Al Nakeeb, S. Ganzleben and J. Failner for their support during synthesis and characterization of the compounds. B. Gossler is acknowledged for the cryo-SEM investigations. We are indebted to Dr. M. Drechsler for conducting the cryo-TEM experiments and Dr. M. Krekhova for the ff-TEM examinations. We thank B. Brunner (Prof. A. Jess, Chemical Engineering) for carrying out the elemental analysis.

Supplementary material

316488_1_En_1_MOESM1_ESM.doc (6.3 mb)
BERNET HW SCHMIDT et al suppl information.doc


  1. 1.
    a) de Loos M, Feringa BL, van Esch JH (2005) Eur J Org Chem 17:3615–3631; b) Estroff LA, Hamilton AD (2004) Chem Rev 104:1201–1217Google Scholar
  2. 2.
    Weiss RG, Terech P (eds) (2006) Molecular gels. Springer, DordrechtGoogle Scholar
  3. 3.
    a) van Esch JH, Feringa BL (2000) Angew Chem Int Ed 39:2263–2266; b) Sangeetha NM, Maitra U (2005) Chem Soc Rev 34:821–836; c) Hirst AR, Escuder B, Miravet JF, Smith DK (2008) Angew Chem Int Ed 47:8002–8018Google Scholar
  4. 4.
    a) Cheng G, Castelletto V, Jones RR, Connon CJ, Hamley IW (2011) Soft Matter 7:1326–1333; b) Orbach R, Adler-Abramovich L, Zigerson S, Mironi-Harpaz I, Seliktar D, Gazit E (2009) Biomacromolecules 10:2646–2651; c) Wang W, Wang H, Ren C, Wang J, Tan M, Shen J, Yang Z, Wang PG, Wang L (2011) Carbohyd Res 346:1013–1017Google Scholar
  5. 5.
    a) Xu X-D, Liang L, Chen C-S, Lu B, Wang N-L, Jiang F-G, Zhang X-Z, Zhuo R-X (2010) Appl Mater Int 2:2663–2671; b) Yang Z, Xu K, Wang L, Gu H, Wie H, Zhang M, Xu B (2005) Chem Commun 35:4414–4416Google Scholar
  6. 6.
    a) Adhikari B, Palui G, Banerjee A (2009) Soft Matter 5:3452–3460; b) Song S, Feng L, Song A, Hao J (2012) J Phys Chem B 116:12850–12856Google Scholar
  7. 7.
    Gao Y, Long MJC, Shi J, Xu B (2012) Chem Commun 48:8404–8406CrossRefGoogle Scholar
  8. 8.
    Ikeda M, Fukuda K, Tanida T, Yoshii T, Hamachi I (2012) Chem Commun 48:2716–2718CrossRefGoogle Scholar
  9. 9.
    a) Mitra RN, Das PK (2008) J Phys Chem C 112:8159–8166; b) Chakrabarty A, Maitra U, Das AD (2012) J Mater Chem 22: 8268–18274; c) Dash J, Patil AJ, Das RN, Dowdall FL, Mann S (2011) Soft Matter 7:120–8126; d) Piepenbrock M-OM, Clarke N, Steed JW (2011) Soft Matter 7:412–2418Google Scholar
  10. 10.
    a) Huang R, Qi W, Feng L, Su R, He Z (2011) Soft Matter 7:6222–6230; b) Díaz Díaz D, Morin E, Schön EM, Budin G, Wagner A, Remy J-S (2011) J Mater Chem 21:641–644; c) Huang Y, Qiu Z, Xu Y, Shi J, Lin H, Zhang Y (2011) Org Biomol Chem 9:2149–2155; d) Rodríguez-Llansola F, Miravet JF, Escuder B (2011) Chem Commun 47:4706–4708; e) Naskar J, Palui G, Banerjee A (2009) J Phys Chem B 113:11787–11792; f) Sutton S, Campbell NL, Cooper AI, Kirkland M, Frith WJ, Adams DJ (2009) Langmuir 25:10285–10291; g) Liang G, Yang Z, Zhang R, Li L, Fan Y, Kuang Y, Gao Y, Wang T, Lu WW, Xu B (2009) Langmuir 25:8419–8422; h) Cao S, Fu X, Wang N, Wang H, Yang Y (2008) Int J Pharm 357:95–99; i) Friggeria A, Feringa BL, van Esch J (2004) J Control Release 97:241–248; j) Ikeda M, Ochi R, Wada A, Hamachi I (2010) Soft Matter 1:491–498; k) Jadhav SR, Chiou B-S, Wood DF, DeGrande-Hoffman G, Glenn GM, John G (2011) Soft Matter 7:864–867; l) Boekhoven J, Koot M, Wezendonk TA, Eelkema R, van Esch JH (2012) J Am Chem Soc 134:12908–12911; m) van Bommel KJC, Stuart MCA, Feringa BL, van Esch J (2005) Org Biomol Chem 3:2917–2920; n) Zhang J, Guo D-S, Wang L-H, Wang Z, Liu Y (2011) Soft Matter 7:1756–1762; o) Vemula PK, Cruikshank GA, Karp JM, John G (2009) Biomaterials 30:383–393Google Scholar
  11. 11.
    a) Bernet A, Behr M, Schmidt H-W (2011) Soft Matter 7:1058–1065; b) Bernet A, Behr M, Schmidt H-W (2012) Soft Matter 8:4873–4876Google Scholar
  12. 12.
    Isaev RN, Ishkov AV, Lobanova TV (2001) J Anal Chem 56:249–252CrossRefGoogle Scholar
  13. 13.
    Arnold LA, Kosinski A, Estébanez-Perpiñá E, Guy RK (2007) J Med Chem 50:5269–5280CrossRefGoogle Scholar
  14. 14.
    a) Lin K, Lin J, Cheng C-H (1996) Polymer 37:4729–4737; b) Zhao Y-W (2007) Huagong Jishu Yu Kaifa (Technology and Development of Medical Industry) 36:38–41; c) Xing J-J, Liu L, Qian J-H, Zhang Y-P (2009) Huaxue Shiji (Chemical Reagents) 31:352–354Google Scholar
  15. 15.
    Paleos CM, Margomenou-leonidopoulou G, Margaritis LH, Terzis A (1985) Mol Cryst Liq Cryst 129:127–135CrossRefGoogle Scholar
  16. 16.
    Frkanec L, Jokić M, Makarević J, Wolsperger K, Žinić M (2002) J Am Chem Soc 124:9716–9717CrossRefGoogle Scholar
  17. 17.
    Gaspar LJM, Baskar G (2005) J Mater Chem 15:5144–5150CrossRefGoogle Scholar
  18. 18.
    a) Gaspar LJM, Baskar G (2005) Chem Commun 28:3603–3605; b) Gaspar LJM, Baskar G (2006) Langmuir 22:2795–2801Google Scholar
  19. 19.
    Zhang S, Fu X, Wang H, Yang Y (2008) J Sep Sci 31:3782–3787CrossRefGoogle Scholar
  20. 20.
    Kar T, Debnath S, Das D, Shome A, Das PK (2009) Langmuir 25:8639–8648CrossRefGoogle Scholar
  21. 21.
    Lim M, Hochstrasser RMJ (2001) Chem Phys 115:7629–7643CrossRefGoogle Scholar
  22. 22.
    Nayak MK, Kim B-H, Kwon JE, Park S, Seo J, Chung JW, Park SY (2010) Chem Eur J 16:7437–7447CrossRefGoogle Scholar
  23. 23.
    Lo KM, Ng SW (2009) Acta Cryst E65:o1101Google Scholar
  24. 24.
    Prasad SM, Sinha RBP, Mandal DK, Rani A (2002) Acta Cryst E58:o1296–o1297Google Scholar
  25. 25.
    Prasad SM, Sinha RBP, Mandal DK, Rani A (2002) Acta Cryst E58:o891–o892Google Scholar
  26. 26.
    Srivastava AK (1978) Z Kristallogr 148:21–28CrossRefGoogle Scholar
  27. 27.
    a) Lim M, Hochstrasser RM (2001) J Chem Phys 115:7629–7643; b) Fujii Y, Yamada H, Mizuta M (1988) J Phys Chem 92:6768–6772; c) Murty TSSR (1971) J Phys Chem 75:1330–1332; d) Bulmer JT, Shurvell HF (1973) J Phys Chem 77:256–262Google Scholar
  28. 28.
    Liu Y, Wang T, Liu M (2012) Chem Eur J 18:14650–14659CrossRefGoogle Scholar
  29. 29.
    Davies TS, Ketner AM, Raghavan SR (2006) J Am Chem Soc 128:6669–6675CrossRefGoogle Scholar
  30. 30.
    Angayarkanny S, Vijay R, Baskar G, Mandal AB (2012) Langmuir 28:9378–9386CrossRefGoogle Scholar
  31. 31.
    Marsh D (2012) Chem Phys Lipids 165:59–76CrossRefGoogle Scholar
  32. 32.
    Bieser AM, Tiller JC (2007) J Phys Chem B 111:13180–13187CrossRefGoogle Scholar
  33. 33.
    a) Wang D, Hao J (2011) Langmuir 27:1713–1717; b) Yuan Z, Lu W, Liu W, Hao J (2008) Soft Matter 4:1639–1644; c) Raue M, Bernet A, Küppers M, Stapf S, Schmidt H-W, Blümich B, Mang~T (2013) Sodium NMR relaxation: a versatile non-invasive tool for the monitoring of phase transitions and the estimation of effective pore sizes of supramolecular hydrogels. In: Sadowski G, Richtering W (eds) Intelligent hydrogels. Springer, Cham/Heidelberg/New York/Dordrecht/London, pp 45–52Google Scholar
  34. 34.
    a) Cates ME, Candau SJ (1990) J Phys Condens Matter 2:6869–6892; b) Hoffmann H (1994) Statics and dynamics of worm-like surfactant micelles. In: Herb CA, Prud’homme, RK (eds) Structure and flow in surfactant solutions. American Chemical Society, Washington, DC, pp. 2–31Google Scholar
  35. 35.
    Wang T, Jiang J, Liu Y, Li Z, Liu M (2010) Langmuir 26:18694–18700CrossRefGoogle Scholar
  36. 36.
    Moreau L, Barthélémy P, El Maataoui M, Grinstaff MW (2004) J Am Chem Soc 126:7533–7539CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Andreas Bernet
    • 1
    Email author
  • Marina Behr
    • 1
  • Rodrigo Q. Albuquerque
    • 2
    • 3
  • Marko Schmidt
    • 4
  • Jürgen Senker
    • 4
  • Hans-Werner Schmidt
    • 1
  1. 1.Macromolecular Chemistry I, Bayreuth Institute for Macromolecular Research (BIMF), Bayreuth Center for Colloids and Interfaces (BZKG)University of BayreuthBayreuthGermany
  2. 2.Theoretical Physics IVUniversity of BayreuthBayreuthGermany
  3. 3.Institute of Chemistry of São CarlosUniversity of São Paulo (USP)São CarlosBrazil
  4. 4.Inorganic Chemistry IIIUniversity of BayreuthBayreuthGermany

Personalised recommendations