Advertisement

Multi-stage Switching Networks with Overflow Links for a Single Call Class

  • Mariusz GłąbowskiEmail author
  • Michał Dominik Stasiak
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 233)

Summary

This article proposes a new analytical model of a multi-stage switching network with a system of overflow links in the first stage of the network. The initial assumption in the study was that the system of overflow links would be used by one class of calls. The article presents the dependencies between the internal blocking probability and the capacity of the overflow link. The results of the analytical calculations are then compared with the results of the simulations of multi-stage switching networks. The present study has confirmed fair accuracy of the proposed method and proved the validity of the implementation of overflow links in switching networks.

Keywords

Blocking Probability Switching Network Output Link Equivalent Network Bell System Technical Journal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clos, C.: A study of non-blocking switching networks. Bell System Technical Journal, 406–424 (1953)Google Scholar
  2. 2.
    Ershova, E., Ershov, V.: Digital Systems for Information Distribution. Radio and Communications, Moscow (1983) (in Russian)Google Scholar
  3. 3.
    Fortet, R.: Systeme Pentaconta Calcul d’orange. LMT, Paris (1961)Google Scholar
  4. 4.
    Fredericks, A.: Congestion in blocking systems – a simple approximation technique. Bell System Technical Journal 59(6), 805–827 (1980)zbMATHGoogle Scholar
  5. 5.
    Głąbowski, M., Kaliszan, A., Stasiak, M.: Convolution algorithm for state-passage probabilities calculation in limited-availability group. In: Proceedings of Fourth Advanced International Conference on Telecommunications 2008, Athens, pp. 215–220 (2008)Google Scholar
  6. 6.
    Głąbowski, M., Kaliszan, A., Stasiak, M.: Modeling product-form state-dependent systems with bpp traffic. Journal of Performance Evaluation 67, 174–197 (2010)CrossRefGoogle Scholar
  7. 7.
    Głąbowski, M., Kubasik, K., Stasiak, M.: Modeling of systems with overflow multi-rate traffic. Telecommunication Systems 37(1-3), 85–96 (2008)CrossRefGoogle Scholar
  8. 8.
    Głąbowski, M., Stasiak, M.: Point-to-point blocking probability in switching networks with reservation. Annales des Télécommunications 57(7-8), 798–831 (2002)Google Scholar
  9. 9.
    Głąbowski, M., Stasiak, M.: Multi-rate Model of the Group of Separated Transmission Links of Various Capacities. In: de Souza, J.N., Dini, P., Lorenz, P. (eds.) ICT 2004. LNCS, vol. 3124, pp. 1101–1106. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Głąbowski, M., Stasiak, M.: Internal blocking probability calculation in switching networks with additional inter-stage links. In: Grzech, A., Borzemski, L., Świątek, J., Wilimowska, Z. (eds.) Information Systems Architecture and Technology, A. Service Oriented Networked Systems, pp. 279–288. Oficyna Wydawnicza Politechniki Wrocławskiej (2011)Google Scholar
  11. 11.
    Głąbowski, M., Stasiak, M., Wiśniewski, A., Zwierzykowski, P.: Uplink blocking probability calculation for cellular systems with WCDMA radio interface, finite source population and differently loaded neighbouring cells. In: Proceedings of Asia-Pacific Conference on Communications, Perth, Australia, pp. 138–142 (2005)Google Scholar
  12. 12.
    Głąbowski, M., Stasiak, M.D.: Internal blocking probability calculation in switching networks with additional inter-stage links and Engset traffic. In: Proceedings of the 8th IEEE, IET International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2012, Poznań, Poland (July 2012)Google Scholar
  13. 13.
    Głąbowski, M., Stasiak, M.D.: Switching networks with overflow links and point-to-point selection. In: Grzech, A., Borzemski, L., Świątek, J., Wilimowska, Z. (eds.) Information Systems Architecture and Technology, Networks Design and Analysis, pp. 149–159. Oficyna Wydawnicza Politechniki Wrocławskiej (2012)Google Scholar
  14. 14.
    Głąbowski, M., Stasiak, M.D.: Recurrent method for blocking probability calculation in switching networks with overflow links. Journal of Telecommunications and Information Technology 1, 56–64 (2013)Google Scholar
  15. 15.
    Inose, H., Saito, T., Kato, M.: Three-stage time-division switching junctor as alternate route. Electronics Letters 2(5), 78–84 (1966)CrossRefGoogle Scholar
  16. 16.
    Katzschner, L., Lorcher, W., Weisschuh, H.: On a experimental local PCM switching network. In: International Seminar o Integrated System for Speech, Video and Data Communication, Zurich, pp. 61–68 (1972)Google Scholar
  17. 17.
    Kaufman, J.: Blocking in a shared resource environment. IEEE Transactions on Communications 29(10), 1474–1481 (1981)CrossRefGoogle Scholar
  18. 18.
    Lee, C.: Analysis of switching networks. Bell System Technical Journal 34(6) (1955)Google Scholar
  19. 19.
    Roberts, J.: A service system with heterogeneous user requirements – application to multi-service telecommunications systems. In: Pujolle, G. (ed.) Proceedings of Performance of Data Communications Systems and their Applications, pp. 423–431. North-Holland, Amsterdam (1981)Google Scholar
  20. 20.
    Roberts, J., Mocci, V., Virtamo, I. (eds.): Broadband Network Teletraffic, Final Report of Action COST 242. Commission of the European Communities. Springer, Berlin (1996)Google Scholar
  21. 21.
    Stasiak, M.: Computation of the probability of losses in switching systems with mutual aid selectors. Rozprawy Elekrotechniczne, Journal of the Polish Academy of Science XXXII(3), 961–977 (1986) (in Polish)Google Scholar
  22. 22.
    Stasiak, M.: Blocking probability in a limited-availability group carrying mixture of different multichannel traffic streams. Annales des Télécommunications 48(1-2), 71–76 (1993)Google Scholar
  23. 23.
    Stasiak, M.: Combinatorial considerations for switching systems carrying multi-channel traffic streams. Annales des Télécommunications 51(11-12), 611–625 (1996)Google Scholar
  24. 24.
    Stasiak, M., Głąbowski, M., Wiśniewski, A., Zwierzykowski, P.: Modeling and Dimensioning of Mobile Networks. Wiley (2011)Google Scholar
  25. 25.
    Stasiak, M., Zwierzykowski, P.: Performance study in multi-rate switching networks with additional inter-stage links. In: Głąbowski, M., Mynbaev, D.K. (eds.) Proceedings of the Seventh Advanced International Conference on Telecommunications, AICT 2011, St. Maarten, The Netherlands Antilles, pp. 77–82. IARIA (2011)Google Scholar
  26. 26.
    Wilkinson, R.: Theories of toll traffic engineering in the USA. Bell System Technical Journal 40, 421–514 (1956)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Chair of Communication and Computer NetworksPoznan University of TechnologyPoznańPoland

Personalised recommendations