Advertisement

Fuzzy Rule-Based Systems for Optimizing Power Consumption in Data Centers

  • Moad SeddikiEmail author
  • Rocío Pérez de Prado
  • José Enrique Munoz-Expósito
  • Sebastián García-Galán
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 233)

Summary

One of the most important aspects in cloud computing is the infraestructure as a service (IaaS). In the basic cloud service model, providers offers virtual machines and solutions based on virtualization. An user pays for consumption of resources (disk space, virtual local area networks, etc.). A data center is a facility used to house computer systems to provide IaaS. Large data centers consume a lot of electricity (high power consumption) and are a source of environmental pollution and costs, so it is important to improve their performance. In this paper a fuzzy rule-based system is proposed to schedule virtual machines in a data center based on Green Computing concepts: minimum power consumption as performance index is considered. This approach is compared to classic scheduling algorithms in literature.

Keywords

Cloud Computing Virtual Machine Round Robin Connection Admission Control Genetic Fuzzy System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cordon, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic fuzzy systems: Evolutionary tuning and learning of fuzzy knowledge bases. World Scientific Pub. Co. Inc. (2001)Google Scholar
  2. 2.
    Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M., Reuther, A.I., ... Freund, R.F.: A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. Journal of Parallel and Distributed Computing 61(6), 810–837 (2001)CrossRefGoogle Scholar
  3. 3.
    Quek, C., Pasquier, M., Lim, B.: A novel self-organizing fuzzy rule-based system for modelling traffic flow behaviour. Expert Syst. Appl. 36(10), 12167–12178 (2009)CrossRefGoogle Scholar
  4. 4.
    Cheong, F., Lai, R.: Connection admission control of mpeg streams in atm network using hierarchical fuzzy logic controller. Eng. Appl. Artif. Intell. 22(1), 117–128 (2009)CrossRefGoogle Scholar
  5. 5.
    Munnoz-Exposito, J.E., García-Galán, S., Ruiz-Reyes, N., Vera-Candeas, P.: Adaptive network-based fuzzy inference system vs. other classification algorithms for warped lpc-based speech/music discrimination. Eng. Appl. Artif. Intell. 20(6), 783–793 (2007)CrossRefGoogle Scholar
  6. 6.
    Franke, C., Hoffmann, F., Lepping, J., Schwiegelshohn, U.: Development of scheduling strategies with Genetic Fuzzy systems. Appl. Soft Comput. 8(1), 706–721 (2008)CrossRefGoogle Scholar
  7. 7.
    Prado, R.P., García Galán, S., Yuste, A.J., Muñoz Expósito, J.E., Sánchez Santiago, A.J., Bruque, S.: Evolutionary Fuzzy Scheduler for Grid Computing. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009, Part I. LNCS, vol. 5517, pp. 286–293. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Guimaraes, D., Madeira, E., Bittencour, L.F.: Power-Aware Virtual Machine Scheduling on Clouds Using Active Cooling Control and DVFS. In: MGC 2011, Lisbon, Portugal (2011)Google Scholar
  9. 9.
    Beloglazov, A., Buyya, R.: Energy Efficient Resource Management in Virtualized Cloud Data Centers. In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (2010)Google Scholar
  10. 10.
    Duy, T., Inoguchi, Y.: Performance Evaluation of a Green Scheduling Algorithm for Energy Savings in Cloud Computing. In: 2010 IEEE International Symposium on Parallel and Distributed Processing, IPDPSW (2010)Google Scholar
  11. 11.
    Berl, A., et al.: Energy Efficient Cloud Computing. University of Passau (2009)Google Scholar
  12. 12.
    Juang, C.F., Lin, J.Y., Lin, C.T.: Genetic reinforcement learning through symbiotic evolution for fuzzy controller design. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 30(2), 290–302 (2000)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mamdani, E., et al.: Application of fuzzy algorithms for control of simple dynamic plant. Procedings of IEEE 121(12), 1585–1588 (1974)Google Scholar
  14. 14.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 15(1), 116–132 (1985)zbMATHCrossRefGoogle Scholar
  15. 15.
    Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and simulation of scalable Cloud computing environments and the CloudSim toolkit: Challenges and opportunities. In: International Conference on High Performance Computing & Simulation, HPCS 2009, pp. 1–11. IEEE (June 2009)Google Scholar
  16. 16.
    Rocha, L.R.: REALcloudSim cloud cimulator (2013), http://sourceforge.net/projects/realcloudsim/
  17. 17.
    Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: Universal Topology Generation from a User’s Perspective (2001), http://www.cs.bu.edu/brite/user_manual/
  18. 18.
    Freund, R.F., et al.: Scheduling resources in multiuser, heterogeneous, computing environments with SmartNet. In: Proceedings of the Heterogeneous Computing Workshop, HCW 1998, pp. 184–199 (1998)Google Scholar
  19. 19.
    Maheswaran, M., Ali, S., Siegal, H.J., Hensgen, D., Freund, R.F.: Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems. In: Proceedings of the Heterogeneous Computing Workshop (HCW 1999), pp. 30–44 (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Moad Seddiki
    • 1
    Email author
  • Rocío Pérez de Prado
    • 1
  • José Enrique Munoz-Expósito
    • 1
  • Sebastián García-Galán
    • 1
  1. 1.Telecommunication Engineering Dpt.University of JaénLinaresSpain

Personalised recommendations