A Simplified Visual Cortex Model for Efficient Image Codding and Object Recognition

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 233)

Summary

In this article a simplified model of biologically inspired mechanisms for an object recognition is presented. The proposed approach is based on the HMAX hierarchical cortex model that was proposed by Riesenhuber and Poggio [1] and later extended by Serre et al [2]. The work described in this paper is an extension of a previous research [3, 4, 5, 6] focused on a computer vision software (named SMAS - Stereovision Mobility Aid System) dedicated for visually impaired persons. Therefore, the emphasis here is put on a one-class detection problem of dangerous objects with the possibility of a future deployment of the proposed solution on a mobile device. The conducted experiments show that the introduced modifications of the hierarchical HMAX model allows for an efficient feature extraction and a visual information coding without decreasing the effectiveness of an object detection process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999)CrossRefGoogle Scholar
  2. 2.
    Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U., Poggio, T.: A quantitative theory of immediate visual recognition. Progress in Brain Research, Computational Neuroscience: Theoretical Insights into Brain Function 165, 33–56 (2007)CrossRefGoogle Scholar
  3. 3.
    Kozik, R.: Stereovision Based Obstacles Detection and Identification. Developments in Machinery Design and Control 11/2009 (2009)Google Scholar
  4. 4.
    Kozik, R.: SMAS - Stereovision Mobility Aid System for People with a vision impairment. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 2. AISC, vol. 84, pp. 315–322. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Kozik, R.: Ontology-based Reasoning for Stereovision Travel Aid System. In: II International Interdisciplinary Technical Conference of Young Scientists InterTech. (2010)Google Scholar
  6. 6.
    Kozik, R.: Rapid Threat Detection for Stereovision Mobility Aid System. In: Czachórski, T., Kozielski, S., Stańczyk, U. (eds.) Man-Machine Interactions 2. AISC, vol. 103, pp. 115–123. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Kozik, R.: Stereovision system for visually impaired. In: Burduk, R., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Computer Recognition Systems 4. AISC, vol. 95, pp. 459–468. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)Google Scholar
  9. 9.
    Mutch, J., Lowe, D.G.: Object class recognition and localization using sparse features with limited receptive fields. International Journal of Computer Vision (IJCV) 80(1), 45–57 (2008)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Forczmański, P.: Experimental Comparison of PCA/2DPCA and IPCA Performance in Image Recognition Task. In: Information Systems Architecture and Technology: System Analysis Approach to the Design, Control and Decision Support. Biblioteka Informatyki Szkol Wyzszych, pp. 163–176. Wroclaw University of Technology (2010)Google Scholar
  12. 12.
    Forczmański, P.: On the dimensionality of PCA method and color space in face recognition. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 4. AISC, vol. 184, pp. 55–62. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Forczmański, P.: Comparison of tensor unfolding variants for 2DPCA-based color facial portraits recognition. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 345–353. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Choraś, M., Kozik, R., Żelek, A.: A Novel Shape-Texture Approach to Palmprint Detection and Identification. In: Proc. Intelligent Systems Design and Applications, ISDA 2008, pp. 638–643. IEEE CS Press, Kaohsiung (2008)Google Scholar
  15. 15.
    Kozik, R., Żelek, A., Choraś, M.: Palmprint Segmentation and Feature Extraction Methods. In: Rutkowski, L., et al. (eds.) Computational Intelligence: Methods and Applications, pp. 377–388. Academic Publishing House EXIT (2008)Google Scholar
  16. 16.
    Kozik, R., Żelek, A., Choraś, M.: Palmprint Recognition Enhanced by the Shape Features. In: Proc. of 7th International Conference on Computer Information Systems and Industrial Management Applications (CISIM 2008), pp. 214–215. IEEE CS Press, Ostrava (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of TelecommunicationsUT&LS BydgoszczBydgoszczPoland

Personalised recommendations