Gabor Wavelet Recognition Approach for Off-Line Handwritten Arabic Using Explicit Segmentation

  • Moftah ElzobiEmail author
  • Ayoub Al-Hamadi
  • Zaher Al Aghbari
  • Laslo Dings
  • Anwar Saeed
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 233)


This article proposes an un-constrained recognition approach for the handwritten Arabic script. The approach starts by explicitly segment each word image into its constituent letters, then a filter-bank of Gabor wavelet transform is used to extract feature vectors corresponding to different scales and orientation in the segmented image. Classification is carried out by employing a support vectors machine algorithm, where IESK-arDB and IFN/ENIT databases are used for testing and evaluation of the proposed approach respectively. A Leave-one-out estimation strategy is followed to assess performance, where results confirmed the approach efficiency.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abuhaiba, I.S.I., Holt, M.J.J., Datta, S.: Recognition of off-line cursive handwriting. Computer Vision and Image Understanding 71(1), 19–38 (1998)CrossRefGoogle Scholar
  2. 2.
    Al-Badr, B.H.: A segmentation-free approach to text recognition with application to Arabic text. Ph.D. thesis, Seattle, WA, USA (1995)Google Scholar
  3. 3.
    Al-Hajj Mohamad, R., Likforman-Sulem, L., Mokbel, C.: Combining slanted-frame classifiers for improved hmm-based arabic handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(7), 1165–1177 (2009)CrossRefGoogle Scholar
  4. 4.
    Almuallim, H., Yamaguchi, S.: A method of recognition of arabic cursive handwriting. IEEE Trans. Pattern Anal. Mach. Intell. 9, 715–722 (1987)CrossRefGoogle Scholar
  5. 5.
    Atici, A.A., Yarman-Vural, F.T.: A heuristic algorithm for optical character recognition of arabic script. Signal Processing 62(1), 87–99 (1997)zbMATHCrossRefGoogle Scholar
  6. 6.
    Bushofa, B.: Segmentation and recognition of arabic characters by structural classification. Image and Vision Computing 15(3), 167–179 (1997)CrossRefGoogle Scholar
  7. 7.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), software available at
  8. 8.
    Chen, J., Cao, H., Prasad, R., Bhardwaj, A., Natarajan, P.: Gabor features for offline arabic handwriting recognition. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, DAS 2010, pp. 53–58. ACM, New York (2010)Google Scholar
  9. 9.
    Elzobi, M., Al-Hamadi, A., Al Aghbari, Z., Dings, L.: Iesk-ardb: a database for handwritten arabic and an optimized topological segmentation approach. International Journal on Document Analysis and Recognition (IJDAR), 1–14 (2012)Google Scholar
  10. 10.
    Haboubi, S., Maddouri, S., Ellouze, N., El-Abed, H.: Invariant primitives for handwritten arabic script: A contrastive study of four feature sets. In: 10th International Conference on Document Analysis and Recognition, ICDAR 2009, pp. 691–697 (2009)Google Scholar
  11. 11.
    Hamamoto, Y., Uchimura, S., Watanabe, M., Yasuda, T., Mitani, Y., Tomita, S.: A gabor filter-based method for recognizing handwritten numerals. Pattern Recognition 31(4), 395–400 (1998)CrossRefGoogle Scholar
  12. 12.
    Lorigo, L., Govindaraju, V.: Offline arabic handwriting recognition: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(5), 712–724 (2006)CrossRefGoogle Scholar
  13. 13.
    Madhvanath, S., Govindaraju, V.: The role of holistic paradigms in handwritten word recognition. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 149–164 (2001)CrossRefGoogle Scholar
  14. 14.
    Pechwitz, M., Maergner, V.: Hmm based approach for handwritten arabic word recognition using the ifn/enit - database. In: Proceedings. Seventh International Conference on Document Analysis and Recognition, pp. 890–894 (2003)Google Scholar
  15. 15.
    Pechwitz, M., Maddouri, S.S., Märgner, V., Ellouze, N., Amiri, H.: Ifn/enit - database of handwritten arabic words. In: Proc. of CIFED 2002, Tunis, pp. 129–136 (2002)Google Scholar
  16. 16.
    Xiu, P., Peng, L., Ding, X.-q., Wang, H.: Offline Handwritten Arabic Character Segmentation with Probabilistic Model. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 402–412. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Moftah Elzobi
    • 1
    Email author
  • Ayoub Al-Hamadi
    • 1
  • Zaher Al Aghbari
    • 2
  • Laslo Dings
    • 1
  • Anwar Saeed
    • 1
  1. 1.Institute for Information Technology and Communications (IIKT)MagdeburgGermany
  2. 2.Computer Science DepartmentUniversity of SharjahSharjahUAE

Personalised recommendations