NEMESYS: Enhanced Network Security for Seamless Service Provisioning in the Smart Mobile Ecosystem

  • Erol Gelenbe
  • Gökçe Görbil
  • Dimitrios Tzovaras
  • Steffen Liebergeld
  • David Garcia
  • Madalina Baltatu
  • George Lyberopoulos
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 264)

Abstract

As a consequence of the growing popularity of smart mobile devices, mobile malware is clearly on the rise, with attackers targeting valuable user information and exploiting vulnerabilities of the mobile ecosystems. With the emergence of large-scale mobile botnets, smartphones can also be used to launch attacks on mobile networks. The NEMESYS project will develop novel security technologies for seamless service provisioning in the smart mobile ecosystem, and improve mobile network security through better understanding of the threat landscape. NEMESYS will gather and analyze information about the nature of cyber-attacks targeting mobile users and the mobile network so that appropriate counter-measures can be taken. We will develop a data collection infrastructure that incorporates virtualized mobile honeypots and a honeyclient, to gather, detect and provide early warning of mobile attacks and better understand the modus operandi of cyber-criminals that target mobile devices. By correlating the extracted information with the known patterns of attacks from wireline networks, we will reveal and identify trends in the way that cyber-criminals launch attacks against mobile devices.

References

  1. 1.
    Abdelrahman O, Gelenbe E, Gorbil G, Oklander B (2013) Mobile network anomaly detection and mitigation: the NEMESYS approach. In: Proceedings of 28th international symposium on computer and information sciences (ISCIS’13) accepted for publicationGoogle Scholar
  2. 2.
    Abdelrahman OH, Gelenbe E (2013) Time and energy in team-based search. Phys Rev E 87(3):032125CrossRefGoogle Scholar
  3. 3.
    Aguilar J, Gelenbe E (1997) Task assignment and transaction clustering heuristics for distributed systems. Inf Sci 97(1–2):199–219CrossRefGoogle Scholar
  4. 4.
    Baltatu M, D’Alessandro R, D’Amico R (2013) NEMESYS: first year project experience in telecom Italia information technology. In: Proceedings of 28th international symposium on computer and information sciences (ISCIS’13) accepted for publicationGoogle Scholar
  5. 5.
    (2013) Mobile device market to reach 2.6 billion units by 2016. Canalys. [Online]. Available: http://www.canalys.com/newsroom/mobile-device-market-reach-26-billion-units-2016
  6. 6.
    (2013) Cisco visual networking index: global mobile data traffic forecast update, 2012–2017. White Paper. Cisco. [Online]. Available: http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
  7. 7.
    Dagon D, Martin T, Starner T (2004) Mobile phones as computing devices: the viruses are coming! IEEE Pervasive Comput 3(4):11–15Google Scholar
  8. 8.
    Delosieres L, Garcia D (2013) Infrastructure for detecting Android malware. In: Proceedings of 28th international symposium on computer and information sciences (ISCIS’13) accepted for publicationGoogle Scholar
  9. 9.
    Felt AP, Finifter M, Chin E, Hanna S, Wagner D (2011) A survey of mobile malware in the wild. In: Proceedings of 1st ACM workshop on security and privacy in smartphones and mobile devices (SPSM’11), pp 3–14Google Scholar
  10. 10.
    Gelenbe E (2009) Steps toward self-aware networks. Commun ACM 52(7):66–75CrossRefGoogle Scholar
  11. 11.
    Gelenbe E (2010) Search in unknown random environments. Phys Rev E 82(6):061112CrossRefGoogle Scholar
  12. 12.
    Gelenbe E (2012) Natural computation. Comput J 55(7):848–851CrossRefGoogle Scholar
  13. 13.
    Gelenbe E, Fourneau J-M (1999) Random neural networks with multiple classes of signals. Neural Comput 11(4):953–963CrossRefGoogle Scholar
  14. 14.
    Gelenbe E, Gorbil G, Wu J-F (2012) Emergency cyber-physical-human systems. In: Proceedings of 21st international conference on computer communications and networks (ICCCN), pp 1–7Google Scholar
  15. 15.
    Gelenbe E, Loukas G (2007) A self-aware approach to denial of service defence. Comput Netw 51(5):1299–1314CrossRefMATHGoogle Scholar
  16. 16.
    Gelenbe E, Muntz RR (1976) Probabilistic models of computer systems: part I (exact results). Acta Informatica 7(1):35–60CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Gelenbe E, Wu F-J (2012) Large scale simulation for human evacuation and rescue. Comput Math Appl 64(2):3869–3880CrossRefGoogle Scholar
  18. 18.
    Golde N, Redon K, Borgaonkar R (2012) Weaponizing femtocells: the effect of rogue devices on mobile telecommunication. In Proceedings 19th annual network and distributed system security, symposium (NDSS’12), pp 1–16Google Scholar
  19. 19.
    Gorbil G, Filippoupolitis A, Gelenbe E (2012) Intelligent navigation systems for building evacuation. In: computer and information sciences II. Springer, pp 339–345Google Scholar
  20. 20.
    Gorbil G, Gelenbe E (2011) Opportunistic communications for emergency support systems. Procedia Comput Sci 5:39–47CrossRefGoogle Scholar
  21. 21.
    Gorbil G, Gelenbe E (2013) Disruption tolerant communications for large scale emergency evacuation. In: Proceedingds 11th IEEE international conference on pervasive computing and communications workshopsGoogle Scholar
  22. 22.
    (2013) Android and iOS combine for 91.1 % of the worldwide smartphone OS market in 4Q12 and 87.6 % for the year, according to IDC. IDC. [Online]. Available: http://www.idc.com/getdoc.jsp?containerId=prUS23946013#.UTCOPjd4DlY
  23. 23.
    Lee PP, Bu T, Woo T (2009) On the detection of signaling DoS attacks on 3G/WiMax wireless networks. Comput Netw 53(15):2601–2616CrossRefMATHGoogle Scholar
  24. 24.
    Leita C, Cova M (2011) HARMUR: storing and analyzing historic data on malicious domains. In: Proceedings of 1st workshop on building analysis datasets and gathering experience returns for, security (BADGERS’11), pp 46–53Google Scholar
  25. 25.
    Leita C, Dacier M (2008) SGNET: a worldwide deployable framework to support the analysis of malware threat models. In: Proceedings 7th European dependable computing conference (EDCC’08), pp 99–109Google Scholar
  26. 26.
    Liebergeld S, Lange M (2013) Android security, pitfalls, lessons learned and BYOD. In: Proceedings of 28th international symposium on computer and information sciences (ISCIS’13) accepted for publicationGoogle Scholar
  27. 27.
    Liebergeld S, Lange M, Mulliner C (2013) Nomadic honeypots: a novel concept for smartphone honeypots. In: Proceedings of W’shop on mobile security technologies (MoST’13), in conjunction with the 34th IEEE symposium on security and privacy, accepted for publicationGoogle Scholar
  28. 28.
    (2008) State of mobile security (2012) Lookout mobile security. [Online]. Available: https://www.lookout.com/_downloads/lookout-state-of-mobile-security-2012.pdf
  29. 29.
    Maslennikov D, Namestnikov Y (2012) Kaspersky security bulletin 2012: the overall statistics for 2012. Kaspersky lab. [Online]. Available: http://www.securelist.com/en/analysis/204792255/Kaspersky_Security_Bulletin_2012_The_overall_statistics_for_2012
  30. 30.
    Papadopoulos S, Tzovaras D (2013) Towards visualizing mobile network data. In: Proceedings of 28th international symposium on computer and information sciences (ISCIS’13) accepted for publicationGoogle Scholar
  31. 31.
    Provos N, Holz T (2007) Virtual Honeypots: from Botnet tracking to intrusion detection. Addison Wesley, JulGoogle Scholar
  32. 32.
    Raiu C, Emm D (2012) Kaspersky security bulletin 2012: Malware evolution. Kaspersky lab. [Online]. Available: http://www.securelist.com/en/analysis/204792254/Kaspersky_Security_Bulletin_2012_Malware_Evolution
  33. 33.
    (2012) National cyber security alliance and McAfee release new cybercrime data for national cyber security awareness month. StaySafeOnline.org. [Online]. Available: http://www.staysafeonline.org/about-us/news/national-cyber-security-alliance-and-mcafee-release-new-cybercrime-data
  34. 34.
    Traynor P, Lin M, Ongtang M, Rao V, Jaeger T, McDaniel P, Porta TL (2009) On cellular botnets: measuring the impact of malicious devices on a cellular network core. In: Proceedings of 16th ACM conference on computer and communications, security (CCS’09), pp 223–234Google Scholar
  35. 35.
    Wahlisch M, Vorbach A, Keil C, Schonfelder J, Schmidt TC, Schiller JH (2013) Design, implementation, and operation of a mobile honeypot, arXiv computing research repository, vol abs/1301.7257Google Scholar
  36. 36.
    Zhou Y, Jiang X (2012) Dissecting Android malware: characterization and evolution. In: Proceedings of 2012 IEEE symposium on security and privacy, pp 95–109Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Erol Gelenbe
    • 1
  • Gökçe Görbil
    • 1
  • Dimitrios Tzovaras
    • 2
  • Steffen Liebergeld
    • 3
  • David Garcia
    • 4
  • Madalina Baltatu
    • 5
  • George Lyberopoulos
    • 6
  1. 1.Department of Electrical and Electronic EngineeringImperial College LondonLondon UK
  2. 2.Centre for Research and Technology HellasInformation Technologies InstituteThessalonikiGreece
  3. 3.Technical University of BerlinBerlinGermany
  4. 4.Hispasec Sistemas S.LCampanillasSpain
  5. 5.Telecom Italia ITMilanItaly
  6. 6.COSMOTE - Mobile Telecommunications S.AMaroussiGreece

Personalised recommendations