The Geometric Basis of Numerical Methods

  • Marc GerritsmaEmail author
  • René Hiemstra
  • Jasper Kreeft
  • Artur Palha
  • Pedro Rebelo
  • Deepesh Toshniwal
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 95)


The relation between physics, its description in terms of partial differential equations and geometry is explored in this paper. Geometry determines the correct weak formulation in finite element methods and also dictates which basis functions should be employed to obtain discrete well-posedness.


Particle Image Velocimetry Boundary Operator Geometric Object Dimensional Object Incidence Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors want to thank the reviewers for their critical remarks and useful suggestions.


  1. 1.
    D. Arnold, R. Falk & R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numerica,15, pp. 1–155, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    D. Arnold, R. Falk & R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc., 47, pp. 281–354, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    D. Arnold & G. Awanou, Finite element differential forms on cubical meshes, Arxiv preprint math/1204.2595, to appear in: Mathematics of Computation, 2013.
  4. 4.
    P. Bochev & J. Hyman, Principles of mimetic discretizations of differential operators, IMA Volumes In Mathematics and its Applications, Springer, 142, pp. 89–114, 2006.MathSciNetCrossRefGoogle Scholar
  5. 5.
    P. Bochev, A discourse on variational and geometric aspects of stability of discretizations, in VKI Lecture Series: 33rd computational fluid dynamics course - novel methods for solving convection dominated systems March 24–28, 2003.Google Scholar
  6. 6.
    A.Bossavit, Discretization of electromagnetic problems in Handbook of Numerical Analysis, Vol. 13, Elsevier, pp. 105–197, 2005.Google Scholar
  7. 7.
    A. Bossavit & F. Rapetti, Whitney elements, from manifolds to fields, proceedings ICOSAHOM 2012, 2013.Google Scholar
  8. 8.
    F. Brezzi & A. Buffa, Innovative mimetic discretizations for electromagnetic problems, Journal of Computational and Applied Mathematics, 234, pp. 1980–1987, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    F. Brezzi, A. Buffa & K. Lipnikov, Mimetic finite differences for elliptic problems, Mathematical Modelling and Numerical Analysis, 43, pp. 277–296, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    F. Brezzi & M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Verlag, 1991.Google Scholar
  11. 11.
    A. Buffa, G. Sangalli & R. Vázquez, Isogeometric analysis in electromagnetics: B-splines approximation, Computer Methods in Applied Mechanics and Engineering 199 (17–20), pp. 1143–1152, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    M. Desbrun, A. Hirani, M. Leok, J. Marsden, Discrete exterior calculus, Arxiv preprint math/0508341, 2005.Google Scholar
  13. 13.
    H. Flanders, Differential forms with applications to the physical sciences, Dover Publications, New York, 1989.zbMATHGoogle Scholar
  14. 14.
    Th. Frankel, The Geometry of Physics. An Introduction. 2nd edition, Cambridge University Press, 2011.Google Scholar
  15. 15.
    J.A. Evans & T.J.R. Hughes, Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations, Journal of Computational Physics 241, pp. 141–167, 2013.CrossRefGoogle Scholar
  16. 16.
    J.A. Evans & T.J.R. Hughes, Isogeometric divergence-conforming B-splines for the Darcy-Stokes-Brinkman equations, Mathematical Models and Methods in Applied Sciences 23 (4), pp. 671–741, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    E.S. Gawlik, P. Mullen, D. Pavlov, J.E. Marsden & M. Desbrun, Geometric, variational discretization of continuum theories, Physica D: Nonlinear Phenomena 240 (21), pp. 1724–1760, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    M.I. Gerritsma, Edge functions for spectral element methods, Spectral and High Order Methods for Partial differential equations, Eds J.S. Hesthaven & E.M. Rønquist, Lecture Notes in Computational Science and Engineering, 76, pp. 199–207, 2011.Google Scholar
  19. 19.
    M.I. Gerritsma, An Introduction to a Compatible Spectral Discretization Method, Mechanics of Advanced Materials and Structures, 19 pp. 48–67, 2012.CrossRefGoogle Scholar
  20. 20.
    J. Harrison, Geometric Hodge star operator with applications to the theorems of Gauss and Green, Math. Proc. Camb Phil. Soc., 140, pp. 135–155, 2006.CrossRefzbMATHGoogle Scholar
  21. 21.
    R.R. Hiemstra, R.H.M. Huijsmans & M.I. Gerritsma, High order gradient, curl and divergence conforming spaces, with an application to compatible IsoGeometric Analysis, submitted to JCP, 2012.Google Scholar
  22. 22.
    R.R. Hiemstra, & M.I. Gerritsma, High order methods with exact conservation properties, proceedings ICOSAHOM 2012Google Scholar
  23. 23.
    R. Hiptmair, Discrete hodge operators, Numerische Mathematik, 90, pp. 265–289, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    R. Hiptmair, Higher order Whitney forms, Geometric Methods for Computational Electromagnetics, 42, pp. 271–299, 2001.Google Scholar
  25. 25.
    A.N. Hirani, Discrete Exterior Calculus, PhD thesis, California Institute of Technology, 2003.
  26. 26.
    A.N. Hirani, K. Kalyanaraman & E.B.van der Zee, Delaunay Hodge star, CAD Computer Aided Design 45 (2), pp. 540–544, 2013.Google Scholar
  27. 27.
    J.M. Hyman & J.C. Scovel, Deriving mimetic difference approximations to differential operators using algebraic topology, Math. Comp. 52, No.186, pp. 471–494, 1989.Google Scholar
  28. 28.
    J.M. Hyman, M. Shashkov & S. Steinberg, The numerical solution of diffusion problems in strongly heterogeous non-isotropic materials, Journal of Computational Physics, 132, 1, pp. 30–148, 1997.MathSciNetCrossRefGoogle Scholar
  29. 29.
    J.J. Kreeft & M.I. Gerritsma, Mixed Mimetic Spectral Element Method for Stokes Flow: A Pointwise Divergence-Free Solution, Journal of Computational Physics, 240, pp. 284–309, 2013..CrossRefGoogle Scholar
  30. 30.
    J.J. Kreeft & M.I. Gerritsma, A priori error estimates for compatible spectral discretization of the Stokes problem for all admissible boundary conditions, arXiv preprint arXiv:1206.2812, 2012.
  31. 31.
    J.J. Kreeft & M.I. Gerritsma, Higher-order compatible discretization on hexahedrals, proceedings ICOSAHOM 2012.
  32. 32.
    J.J. Kreeft, A. Palha & M.I. Gerritsma, Mimetic framework on curvilinear quadrilaterals of arbitrary order, Arxiv preprint arXiv:1111.4304, pp. 1–69, 2011.
  33. 33.
    C. Mattiussi, The finite volume, finite element, and finite difference methods as numerical methods for physical field problems, Advances in Imaging and electron physics, 133, pp. 1–147, 2000.CrossRefGoogle Scholar
  34. 34.
    A. Palha, P. Rebelo, R.R. Hiemstra, J.J. Kreeft & M.I. Gerritsma, Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms, submitted to JCP,, 2012.
  35. 35.
    A. Palha, P. Rebelo & M.I. Gerritsma, Mimetic Spectral Element advection, proceedings ICOSAHOM 2012.
  36. 36.
    D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J.E. Marsden & M. Desbrun, Structure-preserving discretization of incompressible fluids, Physica D: Nonlinear Phenomena 240 (6), pp. 443–458, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    J. Blair Perot, Conservation properties of unstructured staggered mesh schemes, Journal of Computational Physics, 159, pp. 58–89, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    J. Blair Perot, Discrete Conservation Properties of Unstructured Mesh Schemes, Annual Review of Fluid Mechanics, Annual Reviews, 43, pp. 299–318, 2011.CrossRefGoogle Scholar
  39. 39.
    F. Rapetti & A. Bossavit, Whitney forms of higher degree, SIAM J. Numer. Anal., 47, pp. 2369–2386, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    F. Rapetti & A. Bossavit, Geometrical localisation of the degrees of freedom for Whitney elements of higher order, IET Science, Measurement and Technology 1 (1), pp. 63–66, 2007.CrossRefGoogle Scholar
  41. 41.
    P. Rebelo, A. Palha & M.I. Gerritsma, Mixed Mimetic Spectral Element method applied to Darcy’s problem, proceedings ICOSAHOM 2012
  42. 42.
    N. Robidoux & S. Steinberg, A discrete vector calculus in tensor grids, Computational Methods in Applied Mathematics 11 (1), pp. 23–66, 2011.MathSciNetCrossRefGoogle Scholar
  43. 43.
    Tonti, E, On the formal structure of physical theories, preprint of the Italian National Research Council, 1975.
  44. 44.
    D. Toshniwal, R.H.M. Huijsmans & M.I. Gerritsma, A Geometric approach towards momentum conservation, proceedings ICOSAHOM 2012.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marc Gerritsma
    • 1
    Email author
  • René Hiemstra
    • 3
  • Jasper Kreeft
    • 4
  • Artur Palha
    • 1
  • Pedro Rebelo
    • 1
  • Deepesh Toshniwal
    • 2
  1. 1.Aerospace EngineeringDelftThe Netherlands
  2. 2.EPFLLausanneSwitzerland
  3. 3.ICES, University of AustinAustinUSA
  4. 4.Shell Global SolutionAmsterdamThe Netherlands

Personalised recommendations