Genome-Wide Association Studies of Quantitative Glycaemic Traits

  • Inês Barroso
  • Robert Scott


Genome-wide association studies (GWASs) of patients with type 2 diabetes (T2D) and unaffected control participants (case-control studies) are designed to identify genetic variants that predispose to T2D, although the mechanisms by which these variants predispose to T2D are unclear. In 2008, the Meta-Analysis of Glucose and Insulin-related traits Consortium (MAGIC) was established to facilitate meta-analysis of GWAS data of quantitative glycaemic traits (including fasting and post-challenge glycaemic measures) from persons without diabetes. These traits are associated with cardiovascular outcomes even below the diabetic threshold and are important in and of themselves. Our aims were threefold: (a) to identify loci influencing glycaemic traits as a way to understand the similarities and differences between loci influencing glucose regulation within the normal physiological range and those affecting pathophysiological states (T2D); (b) to identify new loci impacting T2D risk using an alternative approach; and (c) to use glycaemic traits to begin to elucidate disease mechanism, i.e. how loci impact biological pathways to promote disease. Here, we describe the approaches used in MAGIC, what we have learned about the genetic architecture of glycaemic traits and T2D itself, and how we see future genomic studies further refining disease aetiology.


Fasting Insulin Gastric Inhibitory Polypeptide Proinsulin Level Early Insulin Secretion Cardiometabolic Trait 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abecasis GR, Auton A, Brooks LD, DePristo M a, Durbin RM, Handsaker RE et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65CrossRefPubMedGoogle Scholar
  2. Agarwala V, Flannick J, Sunyaev S, Altshuler D (2013) Evaluating empirical bounds on complex disease genetic architecture. Nat Genet 45(12):1418–1427CrossRefPubMedPubMedCentralGoogle Scholar
  3. Albrechtsen A, Grarup N, Li Y, Sparsø T, Tian G, Cao H et al (2013) Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes. Diabetologia 56(2):298–310CrossRefPubMedPubMedCentralGoogle Scholar
  4. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J et al (2000) The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26(1):76–80CrossRefPubMedGoogle Scholar
  5. Boden G, Ruiz J, Urbain JL, Chen X (1996a) Evidence for a circadian rhythm of insulin secretion. Am J Physiol 271(2 Pt 1):E246–E252PubMedGoogle Scholar
  6. Boden G, Chen X, Urbain JL (1996b) Evidence for a circadian rhythm of insulin sensitivity in patients with NIDDM caused by cyclic changes in hepatic glucose production. Diabetes 45(8):1044–1050CrossRefPubMedGoogle Scholar
  7. Bonnefond A, Clément N, Fawcett K, Yengo L, Vaillant E, Guillaume J-L et al (2012) Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet 44(3):297–301CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bouatia-Naji N, Rocheleau G, Van Lommel L, Lemaire K, Schuit F, Cavalcanti-Proença C et al (2008) A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science 320(5879):1085–1088CrossRefPubMedGoogle Scholar
  9. Bouatia-Naji N, Bonnefond A, Cavalcanti-Proença C, Sparsø T, Holmkvist J, Marchand M et al (2009) A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet 41(1):89–94CrossRefPubMedGoogle Scholar
  10. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe L a, Hogenesch JB et al (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103(7):1009–1017CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chambers JC, Zhang W, Zabaneh D, Sehmi J, Jain P, Mccarthy MI et al (2009) Common genetic variation near melatonin receptor MTNR1B contributes to raised plasma glucose and increased risk of type 2 diabetes among Indian Asians and European Caucasians. Diabetes; 58(11):2703–2708CrossRefPubMedPubMedCentralGoogle Scholar
  12. Check Hayden E (2014) Is the $1,000 genome for real? Nature. doi: 10.1038/nature.2014.14530 Google Scholar
  13. Chen W, Erdos MR, Jackson AU, Saxena R, Sanna S, Silver KD et al (2008) Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. J Clin Invest 118(7):2620–2628PubMedPubMedCentralGoogle Scholar
  14. Coban E, Ozdogan M, Timuragaoglu A (2004) Effect of iron deficiency anemia on the levels of hemoglobin A1c in nondiabetic patients. Acta Haematol 112(3):126–128CrossRefPubMedGoogle Scholar
  15. De Silva NMG, Freathy RM, Palmer TM, Donnelly L a, Luan J, Guant T et al (2011) Mendelian randomization studies do not support a role for raised circulating triglyceride levels influencing type 2 diabetes, glucose levels, or insulin resistance. Diabetes 60(3):1008–1018CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dimas AS, Lagou V, Barker A, Knowles JW, Mägi R, Hivert M-F et al (2013) Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 2013:3–75Google Scholar
  17. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis C a, Doyle F et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74CrossRefGoogle Scholar
  18. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42(2):105–116CrossRefPubMedPubMedCentralGoogle Scholar
  19. Færch K, Witte DR, Tabák AG, Perreault L, Herder C, Brunner EJ et al (2013) Trajectories of cardiometabolic risk factors before diagnosis of three subtypes of type 2 diabetes: a post-hoc analysis of the longitudinal Whitehall II cohort study. Lancet Diabetes Endocrinol 1(1):43–51CrossRefPubMedGoogle Scholar
  20. Farmer A (2012) Use of HbA1c in the diagnosis of diabetes. BMJ 345:e7293CrossRefPubMedGoogle Scholar
  21. Flannick J, Thorleifsson G, Beer NL, Jacobs SBR, Grarup N, Burtt NP et al (2014) Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet 46(4):357–363CrossRefPubMedPubMedCentralGoogle Scholar
  22. Franklin CS, Aulchenko YS, Huffman JE, Vitart V, Hayward C, Polašek O et al (2010) The TCF7L2 diabetes risk variant is associated with HbA1(C) levels: a genome-wide association meta-analysis. Ann Hum Genet 74(6):471–478CrossRefPubMedGoogle Scholar
  23. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316(5826):889–894CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gao N, LeLay J, Vatamaniuk MZ, Rieck S, Friedman JR, Kaestner KH (2008) Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development. Genes Dev 22(24):3435–3448CrossRefPubMedPubMedCentralGoogle Scholar
  25. González-Sánchez JL, Martínez-Larrad MT, Zabena C, Pérez-Barba M, Serrano-Ríos M (2008) Association of variants of the TCF7L2 gene with increases in the risk of type 2 diabetes and the proinsulin:insulin ratio in the Spanish population. Diabetologia 51(11):1993–1997CrossRefPubMedGoogle Scholar
  26. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38(3):320–323CrossRefPubMedGoogle Scholar
  27. Hani E, Boutin P, Durand E, Inoue H, Permutt M a, Velho G et al (1998) Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians. Diabetologia 41(12):1511–1515CrossRefPubMedGoogle Scholar
  28. Hanson RL, Pratley RE, Bogardus C, Narayan KM, Roumain JM, Imperatore G et al (2000) Evaluation of simple indices of insulin sensitivity and insulin secretion for use in epidemiologic studies. Am J Epidemiol 151(2):190–198CrossRefPubMedGoogle Scholar
  29. Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V et al (2010) Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 42(11):949–960CrossRefPubMedPubMedCentralGoogle Scholar
  30. Huyghe JR, Jackson AU, Fogarty MP, Buchkovich ML, Stančáková A, Stringham HM et al (2013) Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion. Nat Genet 45(2):197–201CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ingelsson E, Langenberg C, Hivert M, Prokopenko I, Lyssenko V, Dupuis J et al (2010) Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans. Diabetes 59(5):1266–1275CrossRefPubMedPubMedCentralGoogle Scholar
  32. DECODE Study Group, the European Diabetes Epidemiology Group. (2001) Glucose tolerance and cardiovascular mortality: comparison of fasting and 2 hour diagnostic criteria. Arch Intern Med 161(3):397–405Google Scholar
  33. Jonsson J, Carlsson L, Edlund T, Edlund H (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371(6498):606–609CrossRefPubMedGoogle Scholar
  34. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846CrossRefPubMedGoogle Scholar
  35. Khaw K-T, Wareham N, Bingham S, Luben R, Welch A, Day N (2004) Association of hemoglobin A1c with cardiovascular disease and mortality in adults: the European prospective investigation into cancer in Norfolk. Ann Intern Med 141(6):413–420CrossRefPubMedGoogle Scholar
  36. Kilpeläinen TO, Zillikens MC, Stančákova A, Finucane FM, Ried JS, Langenberg C et al (2011) Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet 43(8):753–760CrossRefPubMedPubMedCentralGoogle Scholar
  37. Li S, Zhao JH, Luan J, Langenberg C, Luben RN, Khaw KT et al (2011) Genetic predisposition to obesity leads to increased risk of type 2 diabetes. Diabetologia 54(4):776–782CrossRefPubMedPubMedCentralGoogle Scholar
  38. Manning AK, Hivert M-F, Scott R a, Grimsby JL, Bouatia-Naji N, Chen H et al (2012) A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 44(6):659–669CrossRefPubMedPubMedCentralGoogle Scholar
  39. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466(7306):627–631CrossRefPubMedPubMedCentralGoogle Scholar
  40. Marchini J on behalf of the HC (2013) A haplotype map derived from whole genome low-coverage sequencing of over 25,000 individuals. In: Paper presented at the 63rd annual meeting of the American Society of Human Genetics, Abstract 349Google Scholar
  41. Matthews DR, Hosker JPR, Rudenski AS, Naylor BA, Treacher DF, Turner RC et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419CrossRefPubMedGoogle Scholar
  42. Morris ADP, Voight BF, Teslovich TM, Ferreira T, Segrè AV, Steinthorsdottir V et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44(9):981–990CrossRefPubMedPubMedCentralGoogle Scholar
  43. Muniyappa R, Lee S, Chen H, Quon MJ (2008) Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab 294(1):E15–E26CrossRefPubMedGoogle Scholar
  44. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K et al (2013) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506(7488):376–381CrossRefPubMedPubMedCentralGoogle Scholar
  45. Orho-Melander M, Melander O, Guiducci C, Perez-Martinez P, Corella D, Roos C et al (2008) Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes 57(11):3112–3121CrossRefPubMedPubMedCentralGoogle Scholar
  46. Paré G, Chasman DI, Parker AN, Nathan DM, Miletich JP, Zee RY et al (2008) Novel association of HK1 with glycated hemoglobin in a non-diabetic population: a genome-wide evaluation of 14,618 participants in the Women’s Genome Health Study. PLoS Genet 4(12):e1000312CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pasquali L, Gaulton KJ, Rodríguez-Seguí S a, Mularoni L, Miguel-Escalada I, Akerman I et al (2014) Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat Genet 46:136–143CrossRefPubMedPubMedCentralGoogle Scholar
  48. Plenge RM, Scolnick EM, Altshuler D (2013) Validating therapeutic targets through human genetics. Nat Rev Drug Discov 12(8):581–594CrossRefPubMedGoogle Scholar
  49. Polonsky KS, Given BD, Hirsch LJ, Tillil H, Shapiro ET, Beebe C et al (1988) Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med 318(19):1231–1239CrossRefPubMedGoogle Scholar
  50. Poulsen P, Levin K, Petersen I, Christensen K, Beck-Nielsen H, Vaag A (2005) Heritability of insulin secretion, peripheral and hepatic insulin action, and intracellular glucose partitioning in young and old Danish twins. Diabetes 54(1):275–283CrossRefPubMedGoogle Scholar
  51. Prokopenko I, Langenberg C, Florez JC, Saxena R, Soranzo N, Thorleifsson G et al (2009) Variants in MTNR1B influence fasting glucose levels. Nat Genet 41(1):77–81CrossRefPubMedPubMedCentralGoogle Scholar
  52. Prokopenko I, Poon W, Mägi R, Prasad BR, Salehi SA, Almgren P et al (2014) A central role for GRB10 in regulation of islet function in man. PLoS Genet 10(4):e1004235, Williams SM (editor)CrossRefPubMedPubMedCentralGoogle Scholar
  53. Prudente S, Morini E, Trischitta V (2009) Insulin signaling regulating genes: effect on T2DM and cardiovascular risk. Nat Rev Endocrinol 5(12):682–693CrossRefPubMedGoogle Scholar
  54. Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37(12):1595–1607CrossRefPubMedGoogle Scholar
  55. Roberts WL, Safar-Pour S, De BK, Rohlfing CL, Weykamp CW, Little RR (2005) Effects of hemoglobin C and S traits on glycohemoglobin measurements by eleven methods. Clin Chem 51(4):776–778CrossRefPubMedGoogle Scholar
  56. Røder ME, Porte D, Schwartz RS, Kahn SE (1998) Disproportionately elevated proinsulin levels reflect the degree of impaired B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 83(2):604–608PubMedGoogle Scholar
  57. Rung J, Cauchi S, Albrechtsen A, Shen L, Rocheleau G, Cavalcanti-Proença C et al (2009) Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet 41(10):1110–1115CrossRefPubMedGoogle Scholar
  58. Sabatti C, Service SK, Hartikainen A-L, Pouta A, Ripatti S, Brodsky J et al (2009) Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet 41(1):35–46CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sanyal A, Lajoie BR, Jain G, Dekker J (2012) The long-range interaction landscape of gene promoters. Nature 489(7414):109–113CrossRefPubMedPubMedCentralGoogle Scholar
  60. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PIW, Chen H et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316(5829):1331–1336CrossRefPubMedGoogle Scholar
  61. Saxena R, Hivert M-F, Langenberg C, Tanaka T, Pankow JS, Vollenweider P et al (2010) Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat Genet 42(2):142–148CrossRefPubMedPubMedCentralGoogle Scholar
  62. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829):1341–1345CrossRefPubMedPubMedCentralGoogle Scholar
  63. Scott RA, Chu AY, Grarup N, Manning AK, Hivert M-F, Shungin D et al (2012a) No interactions between previously associated 2hour glucose gene variants and physical activity or BMI on 2hour glucose levels. Diabetes 61(5):1291–1296CrossRefPubMedPubMedCentralGoogle Scholar
  64. Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J et al (2012b) Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 44(9):991–1005CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445(7130):881–885CrossRefPubMedGoogle Scholar
  66. Smemo S, Tena JJ, Kim K-H, Gamazon ER, Sakabe NJ, Gómez-Marín C et al (2014) Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507(7492):371–375CrossRefPubMedPubMedCentralGoogle Scholar
  67. Snieder H, Boomsma DI, van Doornen LJ, Neale MC (1999) Bivariate genetic analysis of fasting insulin and glucose levels. Genet Epidemiol 16(4):426–446CrossRefPubMedGoogle Scholar
  68. Soranzo N, Spector TD, Mangino M, Kühnel B, Rendon A, Teumer A et al (2009) A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet 41(11):1182–1190CrossRefPubMedPubMedCentralGoogle Scholar
  69. Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, Dupuis J et al (2010) Common variants at 10 genomic loci influence hemoglobin A1(C) levels via glycemic and nonglycemic pathways. Diabetes 59(12):3229–3239CrossRefPubMedPubMedCentralGoogle Scholar
  70. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU et al (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42(11):937–948CrossRefPubMedPubMedCentralGoogle Scholar
  71. Stamenkovic JA, Olsson AH, Nagorny CL, Malmgren S, Dekker-Nitert M, Ling C et al (2012) Regulation of core clock genes in human islets. Metabolism 61(7):978–985CrossRefPubMedGoogle Scholar
  72. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB et al (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 39(6):770–775CrossRefPubMedGoogle Scholar
  73. Steinthorsdottir V, Thorleifsson G, Sulem P, Helgason H, Grarup N, Sigurdsson A et al (2014) Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet 46(3):294–298CrossRefPubMedGoogle Scholar
  74. Strawbridge RJ, Dupuis J, Prokopenko I, Barker A, Ahlqvist E, Rybin D et al (2011) Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes 60(10):2624–2634CrossRefPubMedPubMedCentralGoogle Scholar
  75. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M et al (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466(7307):707–713CrossRefPubMedPubMedCentralGoogle Scholar
  76. Trynka G, Raychaudhuri S (2013) Using chromatin marks to interpret and localize genetic associations to complex human traits and diseases. Curr Opin Genet Dev 23(6):635–641CrossRefPubMedPubMedCentralGoogle Scholar
  77. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308(5724):1043–1045CrossRefPubMedPubMedCentralGoogle Scholar
  78. Vaxillaire M, Cavalcanti-proenc C, Tichet J, Marre M, Balkau B, Froguel P et al (2008) The common P446L polymorphism in GCKR inversely modulates fasting glucose and triglyceride levels and reduces type 2 diabetes risk in the DESIR prospective general French population. Diabetes 2008:2253–2257CrossRefGoogle Scholar
  79. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42(7):579–589CrossRefPubMedPubMedCentralGoogle Scholar
  80. Voight BF, Kang HM, Ding J, Palmer CD, Sidore C, Chines PS et al (2012) The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet 8(8):e1002793CrossRefPubMedPubMedCentralGoogle Scholar
  81. Weedon MN, Clark VJ, Qian Y, Ben-Shlomo Y, Timpson N, Ebrahim S et al (2006) A common haplotype of the glucokinase gene alters fasting glucose and birth weight: association in six studies and population-genetics analyses. Am J Hum Genet 79(6):991–1001CrossRefPubMedPubMedCentralGoogle Scholar
  82. WTCCC (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661–678Google Scholar
  83. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316(5829):1336–1341CrossRefPubMedPubMedCentralGoogle Scholar
  84. Zethelius B, Byberg L, Hales CN, Lithell H, Berne C (2002) Proinsulin is an independent predictor of coronary heart disease: report from a 27-year follow-up study. Circulation 105(18):2153–2158CrossRefPubMedGoogle Scholar
  85. Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S et al (2014) Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci USA 111(4):E455–E464CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Wellcome Trust Sanger InstituteCambridgeUK
  2. 2.MRC Epidemiology UnitUniversity of Cambridge School of Clinical Medicine, Institute of Metabolic ScienceCambridgeUK

Personalised recommendations