Sampling Emerging Social Behavior in Facebook Using Random Walk Models

  • C. A. Piña-García
  • Dongbing Gu
Part of the Intelligent Systems Reference Library book series (ISRL, volume 53)


It has long been recognized that random walk models apply to a great diversity of situations such as: economics, mathematics and biophysics; current trends about Open Social Networks require new approaches for analyzing material publicly accessible. Thus, in this chapter we examine the potential of random walks to further our understanding about monitoring Social Behavior, taking Facebook as a case study. Although most of the work related to random walk models is traditionally used to generate animal movement paths, it is also possible to adapt classic diffusion models into exploratory algorithms with the aim to improve the ability to search under a complex environment. This algorithmic abstraction provides an analogy for a dissipative process within which trajectories are drawn through the virtual nodes of Facebook.


Brownian Motion Movement Path Random Walk Model Social Explorer Correlate Random Walk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the reviewers of this chapter for their useful comments. Mr. Piña-García has been supported by the Mexican National Council of Science and Technology (CONACYT), through the program “Becas para estudios de posgrado en el extranjero” (no. 213550).


  1. 1.
    Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of facebook networks. Physica A, (2011)Google Scholar
  2. 2.
    Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Walking in facebook: A case study of unbiased sampling of osns. In: INFOCOM, 2010 Proceedings IEEE, IEEE, pp. 1–9 (2010)Google Scholar
  3. 3.
    Viswanathan, G.M., Buldyrev, S.V., Havlin, S., Da Luz, M.G.E., Raposo, E.P., Stanley, H.E.: Optimizing the success of random searches. Nature 401(6756), 911–914 (1999)CrossRefGoogle Scholar
  4. 4.
    Reynolds, A.M., Bartumeus, F.: Optimising the success of random destructive searches: Lévy walks can outperform ballistic motions. J. Theor. Biol. 260(1), 98–103 (2009)Google Scholar
  5. 5.
    Plank, M.J., Codling, E.A.: Sampling rate and misidentification of Lévy and non-Lévy movement paths. Ecology 90(12), 3546–3553 (2009)CrossRefGoogle Scholar
  6. 6.
    Viswanathan, G.M., da Luz, M.G.E., Raposo, E.P., Stanley, H.E.: The Physics of Foraging: An Introduction to Random Searches and Biological Encounters. Cambridge University Press, Cambridge (2011)Google Scholar
  7. 7.
    Codling, E.A., Plank, M.J., Benhamou, S.: Random walk models in biology. J. R. Soc. Interface 5(25), 813 (2008)CrossRefGoogle Scholar
  8. 8.
    Bartumeus, F.: Lévy processes in animal movement: an evolutionary hypothesis. Fractals London 15(2), 151 (2007)CrossRefGoogle Scholar
  9. 9.
    Bartumeus, F., Catalan, J., Viswanathan, G.M., Raposo, E.P., da Luz, M.G.E.: The influence of turning angles on the success of non-oriented animal searches. J. Theor. Biol. 252(1), 43–55 (2008)CrossRefGoogle Scholar
  10. 10.
    Zollner, P.A., Lima, S.L.: Search strategies for landscape-level interpatch movements. Ecology 80(3), 1019–1030 (1999)CrossRefGoogle Scholar
  11. 11.
    Bartumeus, F., Da Luz, M.G.E., Viswanathan, G.M., Catalan, J.: Animal search strategies: a quantitative random-walk analysis. Ecology 86(11), 3078–3087 (2005)CrossRefGoogle Scholar
  12. 12.
    Anderson, D.R., Sweeney, D.J., Williams, T.A.: Introduction to Statistics: Concepts and Applications. West Publishing, St. Paul (1994)Google Scholar
  13. 13.
    Berg, H.C.: Random Walks in Biology. Princeton University Press, Princeton (1993)Google Scholar
  14. 14.
    Kent, J.T., Tyler, D.E.: Maximum likelihood estimation for the wrapped cauchy distribution. J. Appl. Stat. 15(2), 247–254 (1988)CrossRefGoogle Scholar
  15. 15.
    Bénichou, O., Coppey, M., Moreau, M., Moreau, M., Suet, P.H.: Optimal search strategies for hidden targets. Phys. Rev. Lett. 94(19), 198101 (2005)CrossRefGoogle Scholar
  16. 16.
    Bénichou, O., Coppey, M., Moreau, M., Suet, P.H., Voituriez, R.: A stochastic theory for the intermittent behaviour of foraging animals. Physica A 356(1), 151–156 (2005)CrossRefGoogle Scholar
  17. 17.
    Bénichou, O., Coppey, M., Moreau, M., Voituriez, R.: Intermittent search strategies: when losing time becomes efficient. EPL (Europhys. Lett.), 75 349 (2006)Google Scholar
  18. 18.
    Nurzaman, S.G., Matsumoto, Y., Nakamura, Y., Shirai, K., Koizumi, S., Ishiguro, H.: An adaptive switching behavior between levy and Brownian random search in a mobile robot based on biological fluctuation. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1927–1934, IEEE (1927)Google Scholar
  19. 19.
    Pina-Garcia, C., Gu, D., Hu, H.: A composite random walk for facing environmental uncertainty and reduced perceptual capabilities. In: Intelligent Robotics and Applications, pp. 620–629 (2011)Google Scholar
  20. 20.
    Velasco, R.: webpage on Federal Business Opportunities (FBO).
  21. 21.
  22. 22.
    Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Temporal distance metrics for social network analysis. In: Proceedings of the 2nd ACM Workshop on Online Social Networks, pp. 31–36. ACM (2009)Google Scholar
  23. 23.
    Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook social graph. Arxiv, preprint arXiv:1111.4503 (2011)Google Scholar
  24. 24.
    Gellman, R.: Perspectives on privacy and terrorism: all is not lost yet. Gov. Inf. Q. 19(3), 255–264 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUK

Personalised recommendations