Downy-Oak Woods of Italy: Phytogeographical Remarks on a Controversial Taxonomic and Ecologic Issue

  • Riccardo GuarinoEmail author
  • Giuseppe Bazan
  • Bruno Paura
Part of the Geobotany Studies book series (GEOBOT)


The importance of downy oak as an integral component of the “submediterranean” woods has been underscored by many studies. Nevertheless, terms like “submediterranean” and “downy oak” are some of the most poorly understood concepts in European phytogeographic and taxonomic research. Downy oak is well known to be a problematic taxon. The name “Quercus pubescens” (= Q. humilis) combines populations characterized by increasing phenotypic and genomic polymorphisms along north-south gradients, which is explained as the result of a “founder effect” produced by a relatively fast post-glacial re-colonization of the northern areas through rare long-distance dispersal events.

On the other hand, polymorphisms of downy oak in the south provide evidence for geographic/environmental selection driven by different edaphic conditions along clinal gradients of cold and drought stress, even if the distinction of different species is blurred by systematic hybridization and introgression, which have been enhanced by recent deforestation.

Because downy oak occurs widely throughout the Italian Peninsula, we tried to detect some ecological and geographical borders, which might be useful to identify climate-vegetation feedback mechanisms as well as to sharpen the syntaxonomical and systematic investigation of such a critical species complex. Our work is based on a well-distributed geo-referenced set of vegetation data, combined with layers of environmental variables (elevation, climate, soil chemistry). The statistical significance of the correlation between vegetation and environmental data has been evaluated through the Mantel test.

We assessed that:
  • The ecological amplitude of downy oak along the Italian peninsula increases southward;

  • The maximum variance in ecological conditions is found in Sicily, where the morphologic variability of downy oak is also maximized and where potential competitors, like Quercus frainetto, Q. trojana, Carpinus orientalis, and others, are missing;

  • Discontinuities in the distribution/prevalence of morphologic traits of Q. pubescens (regarded here as a species complex) are not determined by sharp ecological or geographical gaps but instead reflect patterns of selection and phenotypic variability in key traits of the geographical range;

  • The Ellenberg T and U indicator values for the flora of Italy are correlated well with temperature and precipitation.


Downy oak Ecological gradients Syntaxonomy Phytogeography Coenologic variability Distribution patterns Human impact 



Financial aid from Forum Plinianum is gratefully acknowledged, and Dr. Stefano Perani is thanked for his helpful assistance with the statistical analyses.


  1. Allegrezza, M., M. Baldoni, E. Biondi, F. Taffetani. & V. Zuccarello 2002. Studio fitosociologico dei boschi a Quercus pubescens s.l. delle Marche e delle zone contigue dell’Appennino centro-settentrionale (Italia centrale). Fitosociologia, 31(1): 161-171.Google Scholar
  2. Allegrezza, M., E. Biondi, & S. Felici 2006. A phytosociological analysis of the vegetation of the Central Adriatic Sector of the Italian Peninsula. Achquetia, 5(2):135-175.Google Scholar
  3. Bacchetta, G., E. Biondi, E. Farris, R. Filigheddu & L. Mossa 2004. A phytosociological study of the deciduous oak woods of Sardinia (Italy). Fitosociologia, 41(1):53-65.Google Scholar
  4. Biondi, E., S. Casavecchia, V. Guerra, P. Medagli, L. Beccarisi & V. Zuccarello 2004. A contribution towards the knowledge of semi-deciduous and evergreen woods of Apulia (southeastern Italy). Fitosociologia, 41(1):3-28.Google Scholar
  5. Biondi, E., D. Gigante, S. Pignatelli & R. Venanzoni 2001. I boschi a Quercus frainetto Ten. presenti nei territori centro-meridionali della Penisola Italiana. Fitosociologia, 38(2):97-111.Google Scholar
  6. Blasi, C. (ed.) 2010. La Vegetazione d’Italia con Carta delle Serie di Vegetazione in scala 1: 500000. Palombi Editore, Roma.Google Scholar
  7. Blasi, C., R. Di Pietro & L. Filesi 2004. Syntaxonomical revision of Quercetalia pubescenti-petraeae in the Italian Peninsula. Fitosociologia, 41(1):87-164.Google Scholar
  8. Blasi, C., & L. Michetti 2005. Biodiversity and climate. In: Biodiversity in Italy – contribution to the National Biodiversity Strategy (C. Blasi et al., eds.), pp 57-66. Palombi Editore, Roma.Google Scholar
  9. Brewer, S., R. Cheddadi, J. L. de Beaulieu & M. Reille 2002. The spread of deciduous Quercus throughout Europe since the last glacial period. Forest Ecology and Management, 156(1-3):27-48.CrossRefGoogle Scholar
  10. Brullo S. & Marcenò C., 1985. Contributo alla conoscenza della classe Quercetea ilicis in Sicilia. Not. Fitosoc, 19(I):183-229.Google Scholar
  11. Brullo, S., R. Guarino & G. Siracusa 1998. Considerazioni tassonomiche sulle querce caducifoglie della Sicilia. Monti e Boschi, 2:33-40.Google Scholar
  12. Brullo, S., R. Guarino & G. Siracusa 1999. Revisione tassonomica delle querce caducifoglie della Sicilia. Webbia, 53(2):265-306.Google Scholar
  13. Brullo S., L. Gianguzzi, A. La Mantia & G. Siracusa 2009. La classe Quercetea ilicis in Sicilia. Boll. Acc. Gioenia Sci. Nat., 41:1-124.Google Scholar
  14. Brullo C., S. Brullo, G. Giusso del Galdo, R. Guarino, G. Siracusa, & S. Sciandrello 2012. The Querco-Fagetea sylvaticae class in Sicily: an example of boreal-temperate vegetation in the central Mediterranean Region. Annali di Botanica (IV Serie), in press.Google Scholar
  15. Brunialti, G., L. Frati, M. Aleffi, M. Marignani, L. Rosati, S. Burrascano & S. Ravera 2010. Lichens and bryophytes as indicators of old-growth features in Mediterranean forests. Plant Biosystematics, 144(1):221-233.CrossRefGoogle Scholar
  16. Bruschi. P., G. G. Vendramin, F. Bussotti, and P. Grossoni 2000. Morphological and molecular differentiation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. (Fagaceae) in northern and central Italy. Annals of Botany, 85:325-333CrossRefGoogle Scholar
  17. Casgrain, P., & P. Legendre 2000. The R package for multivariate and spatial analysis. Version 4.0 d3 Available at:
  18. Chiarucci, A., M. B. Araùjo, G. Decocq, C. Beierkuhnlein & J. M. Fernández-Palacios 2010. The concept of potential natural vegetation: an epitaph? J. Veg. Sci., 21:1172–1178.CrossRefGoogle Scholar
  19. Conti, F., G. Abbate, A. Alessandrini & C. Blasi 2005. An annotated checklist of the Italian vascular flora. Palombi Editori, Roma.Google Scholar
  20. Di Pietro, R.. 2009. Observations on the beech woodlands of the Apennines (peninsular Italy): an intricate biogeographical and syntaxonomical issue. Lazaroa, 30:89-97.Google Scholar
  21. Dumolin-Lapègue, S., B. Demesure, S. Fineschi, V. Le Corre & R. J. Petit 1997. Phylogeographic structure of white oaks throughout the European continent. Genetics, 146:1475-1487.Google Scholar
  22. Ellenberg, H. 1974. Zeigerwerte der Gefässpflanzen Mitteleuropas. Scripta Geobot., 9:1-97.Google Scholar
  23. Eriksson, O. 1996. Regional dynamics of plants: A review of evidence for remnant, source–sink and metapopulations. Oikos, 77:248–258.CrossRefGoogle Scholar
  24. Ferris, C., R. A. King, R. Väinölä & G. M. Hewitt 1998. Chloroplast DNA recognizes three refugial sources of European oaks and suggests independent eastern and western immigrations to Finland. Heredity, 80:584-593.CrossRefGoogle Scholar
  25. Fineschi, S., D. Taurchini, P. Grossoni, R. J. Petit & G. G. Vendramin 2002. Chloroplast DNA variation of white oaks in Italy. Forest Ecology & Management, 156(1-3):103-114.Google Scholar
  26. Fortini, P., V. Viscosi, L. Maiuro, S. Fineschi & G. G. Vendramin 2009. Comparative leaf surface morphology and molecular data of five oaks of subgenus Quercus Oerst. (Fagaceae). Plant Biosystematics, 143(3):543-554.CrossRefGoogle Scholar
  27. Gristina, A. S., & C. Marcenò 2008. Gli indici di bioindicazione di Pignatti-Ellenberg nello studio floristico-vegetazionale del promontorio di Capo Zafferano (Sicilia nord-occidentale). Naturalista Sicil., s. 4, 32(1-2):61-96Google Scholar
  28. Guarino, R., & A. Bernardini 2002. Indagine sulla diversità floro-vegetazionale del comprensorio del cuoio (Toscana centro-settentrionale). Tipografia Bongi, S. Miniato.Google Scholar
  29. Hewitt, G. M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc., 58:247-276.CrossRefGoogle Scholar
  30. Huntley, B. 1990. European vegetation history: palaeovegetation maps from pollen data - 13000 yr BP to present. J. Quater. Sci., 5:103-122.CrossRefGoogle Scholar
  31. Huntley, B., & H. J. B. Birks 1983. An Atlas of Past and Present Pollen Maps for Europe, 0-13,000 Years Ago. Cambridge University Press, Cambridge, U.K.Google Scholar
  32. Maniscalco, M., and F. M. Raimondo 2009. Phytosociological study of the acidophilous decidous oak woods with Ilex aquifolium of Sicily. Fitosociologia, 46(2):67-80.Google Scholar
  33. Mantel, N. A. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res., 27:209–220.Google Scholar
  34. Maricchiolo, C., V. Sambucini, A. Pugliese, M. Munafò, G. Cecchi, E. Rusco, C. Blasi, M. Marchetti, G. Chirici, & P. Corona 2005. La realizzazione in Italia del progetto europeo Corine Land Cover 2000. A.P.A.T. Report, 36:1-86Google Scholar
  35. Mondino, G. P. 1992. La vegetazione forestale del Piemonte, materiali per una tipologia forestale regionale. Ann. Accad. Ital. Sc. Forest. 41:85-137.Google Scholar
  36. Mossa, L., A. Aru, M. C. Fogu, R. Guarino & L. Zavattero 2008. Studio geobotanico del Parco Eolico di Ulassai. Edibo, Catania. 193pp.Google Scholar
  37. Petit, R. J., and 28 co-authors 2002. Chloroplast DNA variation in European white oaks: phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecology and Management, 156(1-3):5-26Google Scholar
  38. Pignatti, E., & S. Pignatti 1968. Die Auswirkungen von Kahlschlag und Brand auf das Quercetum ilicis von Süd-Toskana, Italien. Folia Geobot. Phytotax., 3:17-46.Google Scholar
  39. Pignatti, S. 1982. Flora d’Italia, 1: 113-120. Edagricole, BolognaGoogle Scholar
  40. Pignatti, S. 1998. I Boschi d’Italia. UTET, Torino.Google Scholar
  41. Pignatti, S. 1999. La phytosociologie Braun-Blanquetiste et ses perspectives. Coll. Phytosoc., 27:1-15.Google Scholar
  42. Pignatti, S., P. M. Bianco, G. Fanelli, R. Guarino, L. Petersen & P. Tescarollo 2001a. Reliability and effectiveness of Ellenberg’s indices in checking flora and vegetation changes induced by climatic variations. In: Fingerprints of Climate Changes: adapted behaviour and shifting species ranges (J.-R. Walther J.R., et al., eds.), pp 281-304. Kluwer Academic/ Plenum Publishers, New York & LondonGoogle Scholar
  43. Pignatti, S., P. M. Bianco, P. Tescarollo & G. T. Scarascia-Mugnozza 2001b. La vegetazione della Tenuta Presidenziale di Castelporziano. In: Il sistema ambientale della Tenuta Presidenziale di Castelporziano. Accademia delle Scienze, Scritti e Documenti, 26(2):441-770.Google Scholar
  44. Pignatti, S., H. Ellenberg & S. Pietrosanti 1996. Ecograms for phytosociological tables based on Ellenberg’s Zeigerwerte. Annali di Botanica, 54:5-14.Google Scholar
  45. Pignatti, S., P. Menegoni & S. Pietrosanti 2005. Biondicazione attraverso le piante vascolari. Valori di indicazione secondo Ellenberg (Zeigerwerte) per le specie della Flora d’Italia. Braun-Blanquetia, 39:1-97Google Scholar
  46. Podani, J. 2001. Syntax 2000 computer program for data analysis in ecology and systematics. Scientia Publishing, BudapestGoogle Scholar
  47. Rivas-Martínez, S., & C. Saenz-Lain 1991. Enumeración de los Quercus de la Peninsula Ibérica. Rivasgodaya, 6:101-110.Google Scholar
  48. Rivas-Martínez, S. 2007. Mapa de series, geoseries y geopermaseries de vegetación de España. Itinera Geobot., 17:5–436.Google Scholar
  49. Schicchi, R., P. Mazzola & F. M. Raimondo 1998. Eco-morphologic and taxonomic studies on Quercus hybrids in Sicily. Proc. IX OPTIMA meeting, Paris, 11-17 May: 50Google Scholar
  50. Ubaldi, D. 2003. La vegetazione boschiva d’Italia (manuale di fitosociologia forestale). Clueb, Bologna.Google Scholar
  51. van der Maarel, E. 1993. Relations between sociological-ecological species groups and Ellenberg indicator values. Phytocoenologia, 23:343-362.CrossRefGoogle Scholar
  52. Viscosi, V., O. Lepais, S. Gerber & P. Fortini 2009. Leaf morphological analyses in four European oak species (Quercus) and their hybrids: a comparison of traditional and geometric morphometric methods. Plant Biosystematics, 143(3):564-574.CrossRefGoogle Scholar
  53. Willner, W., R. Di Pietro & E. Bergmeier 2008. Phytogeographical evidence for refuge areas and postglacial spread of European beech forests. In: Frontiers of Vegetation Science — An Evolutionary Angle (L. Mucina et al., eds), pp 204-205. Keith Phillips Images, Somerset West.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Environmental Biology and BiodiversityUniversity of PalermoPalermoItaly
  2. 2.Department S.A.V.A.University of MoliseCampobassoItaly

Personalised recommendations