Measuring Multimodal Optimization Solution Sets with a View to Multiobjective Techniques

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 227)

Abstract

As in multiobjective optimization, multimodal optimization generates solution sets that must be measured in order to compare different optimization algorithms. We discuss similarities and differences in the requirements for measures in both domains and suggest a property-based taxonomy. The process of measuring actually consists of two subsequent steps, a subset selection that only considers ‘suitable’ points (or just takes all available points of a solution set) and the actual measuring. Known quality indicators often rely on problem knowledge (objective values and/or locations of optima and basins) which makes them unsuitable for real-world applications. Hence, we propose a new subset selection heuristic without such demands, which thereby enables measuring solution sets of single-objective problems, provided a distance metric exists.

Keywords

multimodal optimization multiobjective optimization performance measuring solution sets subset selection archive indicator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hansen, N., Auger, A., Finck, S., Ros, R.: Real-Parameter Black-Box Optimization Benchmarking: Experimental Setup (2013), http://coco.lri.fr/downloads/download13.05/bbobdocexperiment.pdf (accessed March 22, 2013)
  2. 2.
    Li, X., Engelbrecht, A., Epitropakis, M.: Benchmark functions for CEC 2013 special session and competition on niching methods for multimodal function optimization. Technical report, RMIT University, Evolutionary Computation and Machine Learning Group, Australia (2013)Google Scholar
  3. 3.
    Zitzler, E., Knowles, J., Thiele, L.: Quality assessment of pareto set approximations. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 373–404. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Emmerich, M.T.M., Deutz, A.H., Kruisselbrink, J.W.: On quality indicators for black-box level set approximation. In: Tantar, E., Tantar, A.-A., Bouvry, P., Del Moral, P., Legrand, P., Coello Coello, C.A., Schütze, O. (eds.) EVOLVE- A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation. SCI, vol. 447, pp. 153–184. Springer, Heidelberg (2013)Google Scholar
  5. 5.
    Solow, A.R., Polasky, S.: Measuring biological diversity. Environmental and Ecological Statistics 1(2), 95–103 (1994)CrossRefGoogle Scholar
  6. 6.
    Ulrich, T., Bader, J., Thiele, L.: Defining and optimizing indicator-based diversity measures in multiobjective search. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 707–717. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Ursem, R.K.: Multinational evolutionary algorithms. In: Angeline, P.J. (ed.) Proceedings of the Congress of Evolutionary Computation (CEC 1999), vol. 3, pp. 1633–1640. IEEE Press, Piscataway (1999)Google Scholar
  8. 8.
    Stoean, C., Preuss, M., Stoean, R., Dumitrescu, D.: Multimodal optimization by means of a topological species conservation algorithm. IEEE Transactions on Evolutionary Computation 14(6), 842–864 (2010)CrossRefGoogle Scholar
  9. 9.
    Coello Coello, C.A., Cruz Cortés, N.: Solving multiobjective optimization problems using an artificial immune system. Genetic Programming and Evolvable Machines 6(2), 163–190 (2005)CrossRefGoogle Scholar
  10. 10.
    Thomsen, R.: Multimodal optimization using crowding-based differential evolution. In: IEEE Congress on Evolutionary Computation, vol. 2, pp. 1382–1389 (2004)Google Scholar
  11. 11.
    Miller, B.L., Shaw, M.J.: Genetic algorithms with dynamic niche sharing for multimodal function optimization. In: International Conference on Evolutionary Computation, pp. 786–791 (1996)Google Scholar
  12. 12.
    Shir, O.M.: Niching in evolutionary algorithms. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 1035–1069. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation 16(4), 504–522 (2012)CrossRefGoogle Scholar
  14. 14.
    Preuss, M., Schönemann, L., Emmerich, M.: Counteracting genetic drift and disruptive recombination in (μ + /, λ)-EA on multimodal fitness landscapes. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 865–872. ACM (2005)Google Scholar
  15. 15.
    Preuss, M.: Improved topological niching for real-valued global optimization. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 386–395. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Computational Intelligence Group, Chair of Algorithm Engineering, Department of Computer ScienceTU DortmundDortmundGermany

Personalised recommendations