Preliminary Study of Bloat in Genetic Programming with Behavior-Based Search

  • Leonardo Trujillo
  • Enrique Naredo
  • Yuliana Martínez
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 227)

Abstract

Bloat is one of the most interesting theoretical problems in genetic programming (GP), and one of the most important pragmatic limitations in the development of real-world GP solutions. Over the years, many theories regarding the causes of bloat have been proposed and a variety of bloat control methods have been developed. It seems that one of the underlying causes of bloat is the search for fitness; as the fitness-causes-bloat theory states, selective bias towards fitness seems to unavoidably lead the search towards programs with a large size. Intuitively, however, abandoning fitness does not appear to be an option. This paper, studies a GP system that does not require an explicit fitness function, instead it relies on behavior-based search, where programs are described by the behavior they exhibit and selective pressure is biased towards unique behaviors using the novelty search algorithm. Initial results are encouraging, the average program size of the evolving population does not increase with novelty search; i.e., bloat is avoided by focusing on novelty instead of quality.

Keywords

Bloat Genetic Programming Novelty Search 

References

  1. 1.
    Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming. In: Proceedings of the Tenth Conference on Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) CEC 2008, pp. 111–116. IEEE Press (2008)Google Scholar
  2. 2.
    Beadle, L., John’son, C.G.: Semantically driven mutation in genetic programming. In: Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, CEC 2009, pp. 1336–1342. IEEE Press (2009)Google Scholar
  3. 3.
    Brooks, R.A.: Cambrian intelligence: the early history of the new AI. MIT Press, Cambridge (1999)MATHGoogle Scholar
  4. 4.
    Dawkins, R.: Climbing Mount Improbable. W.W. Norton & Company (1996)Google Scholar
  5. 5.
    Dignum, S., Poli, R.: Generalisation of the limiting distribution of program sizes in tree-based genetic programming and analysis of its effects on bloat. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 1588–1595. ACM, New York (2007)CrossRefGoogle Scholar
  6. 6.
    García-Valdez, M., Trujillo, L., de Vega, F.F., Merelo Guervós, J.J., Olague, G.: EvoSpace-interactive: A framework to develop distributed collaborative-interactive evolutionary algorithms for artistic design. In: Machado, P., McDermott, J., Carballal, A. (eds.) EvoMUSART 2013. LNCS, vol. 7834, pp. 121–132. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Harper, R.: Spatial co-evolution: quicker, fitter and less bloated. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, GECCO 2012, pp. 759–766. ACM, New York (2012)CrossRefGoogle Scholar
  8. 8.
    Kistemaker, S., Whiteson, S.: Critical factors in the performance of novelty search. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 965–972. ACM (2011)Google Scholar
  9. 9.
    Kowaliw, T., Dorin, A., McCormack, J.: Promoting creative design in interactive evolutionary computation. IEEE Transactions on Evolutionary Computation 16(4), 523–536 (2012)CrossRefGoogle Scholar
  10. 10.
    Koza, J.: Human-competitive results produced by genetic programming. Genetic Programming and Evolvable Machines 11(3), 251–284 (2010)CrossRefGoogle Scholar
  11. 11.
    Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge (1992)MATHGoogle Scholar
  12. 12.
    Krawiec, K., Pawlak, T.: Locally geometric semantic crossover: a study on the roles of semantics and homology in recombination operators. Genetic Programming and Evolvable Machines 14(1), 31–63 (2013)CrossRefGoogle Scholar
  13. 13.
    Langdon, W.B., Poli, R.: Fitness causes bloat. In: Proceedings of the Second On-line World Conference on Soft Computing in Engineering Design and Manufacturing, pp. 13–22. Springer (1997)Google Scholar
  14. 14.
    Langdon, W.B., Poli, R.: Fitness causes bloat: Mutation. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 37–48. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: Proceedings of the Eleventh International Conference on Artificial Life, ALIFE XI. MIT Press, Cambridge (2008)Google Scholar
  16. 16.
    Lehman, J., Stanley, K.O.: Efficiently evolving programs through the search for novelty. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010, pp. 837–844. ACM (2010)Google Scholar
  17. 17.
    Lehman, J., Stanley, K.O.: Abandoning objectives: Evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)CrossRefGoogle Scholar
  18. 18.
    Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 211–218. ACM (2011)Google Scholar
  19. 19.
    Mahfoud, S.W.: Niching methods for genetic algorithms. PhD thesis, Champaign, IL, USA, UMI Order No. GAX95-43663 (1995)Google Scholar
  20. 20.
    McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic programming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary robotics: An empirical study. Evol. Comput. 20(1), 91–133 (2012)CrossRefGoogle Scholar
  23. 23.
    Naredo, E., Trujillo: Searching for novel clustering programs. To appear in Proceeding from the Genetic and Evolutionary Computation Conference, GECCO 2013. ACM (2013)Google Scholar
  24. 24.
    Naredo, E., Trujillo, L., Martínez, Y.: Searching for novel classifiers. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 145–156. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: A survey and analysis. Robot. Auton. Syst. 57(4), 345–370 (2009)CrossRefGoogle Scholar
  26. 26.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology. MIT Press, Cambridge (2000)Google Scholar
  27. 27.
    Ofria, C., Wilke, C.O.: Avida: a software platform for research in computational evolutionary biology. Artif. Life 10(2), 191–229 (2004)CrossRefGoogle Scholar
  28. 28.
    Poli, R., Langdon, W.B., Dignum, S.: On the limiting distribution of program sizes in tree-based genetic programming. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 193–204. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Silva, S.: Reassembling operator equalisation: a secret revealed. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1395–1402. ACM, New York (2011)Google Scholar
  30. 30.
    Silva, S., Almeida, J.: Gplab–a genetic programming toolbox for matlab. In: Gregersen, L. (ed.) Proceedings of the Nordic MATLAB Conference, pp. 273–278 (2003)Google Scholar
  31. 31.
    Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and a review of past and current bloat theories. Genetic Programming and Evolvable Machines 10(2), 141–179 (2009)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic programming and a survey of bloat control methods. Genetic Programming and Evolvable Machines 13(2), 197–238 (2012)CrossRefGoogle Scholar
  33. 33.
    Trujillo, L., Martínez, Y., Galván-López, E., Legrand, P.: Predicting problem difficulty for genetic programming applied to data classification. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1355–1362. ACM, New York (2011)Google Scholar
  34. 34.
    Trujillo, L., Olague, G., Lutton, E., de Vega, F.F.: Discovering several robot behaviors through speciation. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 164–174. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  35. 35.
    Trujillo, L., Olague, G., Lutton, E., de Vega, F.F., Dozal, L., Clemente, E.: Speciation in behavioral space for evolutionary robotics. Journal of Intelligent & Robotic Systems 64(3-4), 323–351 (2011)CrossRefGoogle Scholar
  36. 36.
    Uy, N.Q., Hoai, N.X., O’Neill, M., Mckay, R.I., Galván-López, E.: Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genetic Programming and Evolvable Machines 12(2), 91–119 (2011)CrossRefGoogle Scholar
  37. 37.
    Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional complexity in genetic programming. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010, pp. 877–884. ACM, New York (2010)CrossRefGoogle Scholar
  38. 38.
    Zhang, M., Smart, W.: Using gaussian distribution to construct fitness functions in genetic programming for multiclass object classification. Pattern Recogn. Lett. 27(11), 1266–1274 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Leonardo Trujillo
    • 1
  • Enrique Naredo
    • 1
  • Yuliana Martínez
    • 1
  1. 1.Doctorado en Ciencias de la Ingeniería, Departamento de Ingeniería Eléctrica y ElectrónicaInstituto Tecnológico de TijuanaTijuanaMéxico

Personalised recommendations