Advertisement

Logarithmic-Time Updates in SMS-EMOA and Hypervolume-Based Archiving

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 227)

Abstract

The hypervolume indicator is frequently used in selection procedures of evolutionary multi-criterion optimization algorithms (EMOA) and in bounded size archivers for Pareto non-dominated points. We propose and study an algorithm that updates all hypervolume contributions and identifies a minimal hypervolume contributor after the removal or insertion of a single point in ℝ2 in amortized time complexity O(logn). This algorithm will be tested for the efficient update of bounded-size archives and for a fast implementation of the steady state selection in the bi-criterion SMS-EMOA. To achieve an amortized time complexity of O(logn) for SMS-EMOA iterations a constant-time update method for establishing a ranking among dominated solutions is suggested as an alternative to non-dominated sorting. Besides the asymptotical analysis, we discuss empirical results on several test problems and discuss the impact of the overhead caused by maintaining additional AVL tree data structures, including scalability studies with very large population size that will yield high resolution approximations.

Keywords

Pareto Front Objective Vector Binary Search Tree Sorting Order True Pareto Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beume, N., Fonseca, C.M., López-Ibáñez, M., Paquete, L., Vahrenhold, J.: On the complexity of computing the hypervolume indicator. IEEE Trans. Evolutionary Computation 13(5), 1075–1082 (2009)CrossRefGoogle Scholar
  2. 2.
    Bradstreet, L., Barone, L., While, L.: Updating exclusive hypervolume contributions cheaply. In: Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, CEC 2009, pp. 538–544. IEEE Press, Piscataway (2009)CrossRefGoogle Scholar
  3. 3.
    Bringmann, K., Friedrich, T.: Approximating the least hypervolume contributor: NP-hard in general, but fast in practice. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 6–20. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Bringmann, K., Friedrich, T.: An efficient algorithm for computing hypervolume contributions. Evol. Comput. 18(3), 383–402 (2010)CrossRefGoogle Scholar
  5. 5.
    da Fonseca, V.G., Fonseca, C.M.: The relationship between the covered fraction, completeness and hypervolume indicators. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 25–36. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, Hoboken (2001)MATHGoogle Scholar
  7. 7.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm, Nsga-ii (2000)Google Scholar
  8. 8.
    Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: 2005 Intl. Conference, pp. 62–76. Springer (March 2005)Google Scholar
  9. 9.
    Emmerich, M.T.M., Fonseca, C.M.: Computing hypervolume contributions in low dimensions: asymptotically optimal algorithm and complexity results. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 121–135. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Fonseca, C.M., Paquete, L., Lopez-Ibanez, M.: An improved dimension-sweep algorithm for the hypervolume indicator, pp. 1157–1163 (July 2006)Google Scholar
  11. 11.
    Landis, E.M., Adelson-Velskii, G.: An algorithm for the organization of information. Proceedings of the USSR Academy of Sciences 146, 263–266Google Scholar
  12. 12.
    Guerreiro, A.P., Fonseca, C.M., Emmerich, M.T.M.: A fast dimension-sweep algorithm for the hypervolume indicator in four dimensions. In: CCCG, pp. 77–82 (2012)Google Scholar
  13. 13.
    Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)CrossRefGoogle Scholar
  14. 14.
    Knowles, J.D., Corne, D.W., Fleischer, M.: Bounded archiving using the Lebesgue measure. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 2490–2497. IEEE Press (2003)Google Scholar
  15. 15.
    Naujoks, B., Beume, N., Emmerich, M.T.M.: Multi-objective optimisation using S-metric selection: application to three-dimensional solution spaces, vol. 2, pp. 1282–1289 (September 2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Leiden Institute of Advanced Computer Science, Faculty of ScienceLeiden UniversityLeidenThe Netherlands

Personalised recommendations