mm-Wave Silicon: Smarter, Faster, and Cheaper Communication and Imaging

  • Ali M. Niknejad
  • Amin Arbabian
  • Steven Callender
  • JiaShu Chen
  • Jun-Chau Chien
  • Shinwon Kang
  • Jungdong Park
  • Siva Thyagarajan
Chapter

Abstract

This paper will highlight three mm-wave integrated circuit systems appropriate for communication and imaging. The first chip is an efficient transmitter for the realization of a mm-wave system using digital modulation and spatial quadrature power combining. The second system is a prototype 260 GHz short range chip-to-chip communication system in CMOS using on-chip antennas. The final system is a 3D imager with a 90 GHz carrier and 25-parsec pulse width, potentially applicable for HCI (gesture recognition) and medical imaging. These systems represent new application domains for mm-wave electronics where the high volume/low cost of silicon technology can be exploited to realize new functionalities and data rates, addressing important hurdles in the expansion of our communication networks and opening up the ability to see objects in a completely new way using 3D mm-wave imaging.

References

  1. 1.
    Emami et al., A 60 GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications, in ISSCC Digest of Technical Papers, San Francisco, Feb 2011, pp. 164–165Google Scholar
  2. 2.
    S. Emami, C. Doan, A.M. Niknejad, R. Brodersen, A highly integrated 60 GHz CMOS front-end receiver, in ISSCC Digest of Technical Papers, San Francisco, Feb 2007, pp. 190–191Google Scholar
  3. 3.
    M. Tabesh, J. Chen, C. Marcu, L.-K. Kong, E. Alon, and A.M. Niknejad, A 65 nm CMOS 4-channel sub-34mW/channel 60 GHz phased array transceiver, in ISSCC Digest of Technical Papers, San Francisco, Feb 2007, pp. 166–167Google Scholar
  4. 4.
    Valdes-Garcia et al., A fully integrated 16-element phased-array transmitter in SiGe BiCMOS for 60-GHz communications. IEEE J. Solid State Circuits 45, 2757–2773 (2010)Google Scholar
  5. 5.
    J. Chen, A.M. Niknejad, A compact 1V 18.6 dBm 60GHz power amplifier in 65 nm CMOS, in ISSCC Digest of Technical Papers, San Francisco, Feb 2011, pp. 432–433Google Scholar
  6. 6.
    D. Chowdhury, Y. Lu, E. Alon, A.M. Niknejad, A 2.4 GHz mixed-signal polar power amplifier with low-power integrated filtering in 65 nm CMOS, in IEEE Custom Integrated Circuits Conference (CICC), San Jose, 2010Google Scholar
  7. 7.
    Xu et al., A flip-chip-packaged 25.3 dBm class-D outphasing power amplifier in 32 nm CMOS for WLAN application. IEEE J. Solid State Circuits 46, 1596–1605 (2011)Google Scholar
  8. 8.
    J. Chen et al., A digitally modulated mm-wave cartesian beamforming transmitter with quadrature spatial combining, ISSCC Digest of Technical Papers, San Francisco, Feb 2013, pp. 232–233Google Scholar
  9. 9.
    Floyd et al., Intra-chip wireless interconnect for clock distribution implemented with integrated antennas, receivers, and transmitters. IEEE J. Solid State Circuits 37, 543–552 (2002)Google Scholar
  10. 10.
    J.-D. Park, S. Kang, S.V. Thyagarajan, E. Alon, A.M. Niknejad, A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication, in Symposium on VLSI Circuits (VLSIC), Honolulu, 2012, pp. 48–49.Google Scholar
  11. 11.
    D. Huang, T.R. LaRocca, M.C.F. Chang, L. Samoska, A. Fung, R.L. Campbell, M. Andrews, Terahertz CMOS frequency generator using linear superposition technique. IEEE J. Solid State Circuits 43, 2730–2738 (2008)CrossRefGoogle Scholar
  12. 12.
    J.-D. Park, S. Kang, A.M. Niknejad, A 0.38 THz fully integrated transceiver utilizing a quadrature push-push harmonic circuitry in SiGe BiCMOS. IEEE J. Solid State Circuits 47, 2344–2354 (2012)Google Scholar
  13. 13.
    X. Li, S. Hagness, A confocal microwave imaging algorithm for breast cancer detection. IEEE Microw. Wirel. Compon. Lett. 11(3), pp. 130–132 (2001)CrossRefGoogle Scholar
  14. 14.
    S. Callender, A. Niknejad, A phase-adjustable delay-locked loop utilizing embedded phase interpolation, in 2011 RFIC Symposium, Baltimore, June 2011Google Scholar
  15. 15.
    A. Arbabian, S. Kang, S. Callender, J.-C. Chien, B. Afshar, A. Niknejad, A 94 GHz mm-wave to baseband pulsed-radar for imaging and gesture recognition, Symposium on VLSI Circuits (VLSIC), Honolulu, 2012, pp. 56–57Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ali M. Niknejad
    • 1
  • Amin Arbabian
    • 2
  • Steven Callender
    • 3
  • JiaShu Chen
    • 3
  • Jun-Chau Chien
    • 3
  • Shinwon Kang
    • 3
  • Jungdong Park
    • 3
  • Siva Thyagarajan
    • 3
  1. 1.Berkeley Wireless Research Center, University of CaliforniaBerkeleyUSA
  2. 2.Stanford University, Stanford Berkeley Wireless Research CenterBerkeleyUSA
  3. 3.Berkeley Wireless Research CenterBerkeleyUSA

Personalised recommendations