Nanotechnology in Vaccine Delivery

  • Martin J. D’Souza
  • Suprita A. Tawde
  • Archana Akalkotkar
  • Lipika Chablani
  • Marissa D’Souza
  • Maurizio Chiriva-Internati


Immunotherapy has been a trusted therapy for centuries to eliminate infectious diseases. However, the successful immunotherapy depends on several factors such as nature of pathogen, vaccine delivery system, route of administration, and immune system of the host. With the advances in nanotechnology, immunotherapy is now targeting different challenging disorders including cancer as well as infectious diseases. Along with the evolution of several adjuvants to enhance immune response to vaccines, nanotechnology plays an important role by acting as self-adjuvant in form of particles.


  1. 1.
    Heffernan, M.J., Zaharoff, D.A., Fallon, J.K., Schlom, J., Greiner, J.W.: In vivo efficacy of a chitosan/IL-12 adjuvant system for protein-based vaccines. Biomaterials 32, 926–932 (2011)PubMedGoogle Scholar
  2. 2.
    Guimaraes-Walker, A., et al.: Lessons from IAVI-006, a phase I clinical trial to evaluate the safety and immunogenicity of the pTHr.HIVA DNA and MVA.HIVA vaccines in a prime-boost strategy to induce HIV-1 specific T-cell responses in healthy volunteers. Vaccine 26, 6671–6677 (2008)PubMedGoogle Scholar
  3. 3.
    Beckett, C.G., et al.: Evaluation of a prototype dengue-1 DNA vaccine in a Phase 1 clinical trial. Vaccine 29(5), 960–968 (2011)PubMedGoogle Scholar
  4. 4.
    Martin, J.E., et al.: A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine 26, 6338–6343 (2008)PubMedGoogle Scholar
  5. 5.
    Finn, O.J., Forni, G.: Prophylactic cancer vaccines. Curr. Opin. Immunol. 14, 172–177 (2002)PubMedGoogle Scholar
  6. 6.
    Arlen, P.M., Madan, R.A., Hodge, J.W., Schlom, J., Gulley, J.L.: Combining vaccines with conventional therapies for cancer. Update. Cancer. Ther. 2, 33–39 (2007)PubMedGoogle Scholar
  7. 7.
    Tartaglia, J., et al.: Therapeutic vaccines against melanoma and colorectal cancer. Vaccine 19, 2571–2575 (2001)PubMedGoogle Scholar
  8. 8.
    Anderson, R.J., Schneider, J.: Plasmid DNA and viral vector-based vaccines for the treatment of cancer. Vaccine 25(Suppl 2), B24–B34 (2007)PubMedGoogle Scholar
  9. 9.
    Sheng, W.Y., Huang, L.: Cancer immunotherapy and nanomedicine. Pharm. Res. 28(2), 200–214 (2011)PubMedGoogle Scholar
  10. 10.
    Harandi, A.M., Medaglini, D., Shattock, R.J.: Vaccine adjuvants: a priority for vaccine research. Vaccine 28, 2363–2366 (2010)PubMedGoogle Scholar
  11. 11.
    Mbow, M.L., De Gregorio, E., Valiante, N.M., Rappuoli, R.: New adjuvants for human vaccines. Curr. Opin. Immunol. 22, 411–416 (2010)PubMedGoogle Scholar
  12. 12.
    Nguyen, C.L., et al.: Mechanisms of enhanced antigen-specific T cell response following vaccination with a novel peptide-based cancer vaccine and systemic interleukin-2 (IL-2). Vaccine 21, 2318–2328 (2003)PubMedGoogle Scholar
  13. 13.
    Toubaji, A., et al.: The combination of GM-CSF and IL-2 as local adjuvant shows synergy in enhancing peptide vaccines and provides long term tumor protection. Vaccine 25, 5882–5891 (2007)PubMedGoogle Scholar
  14. 14.
    Yin, W., et al.: A novel therapeutic vaccine of GM-CSF/TNFalpha surface-modified RM-1 cells against the orthotopic prostatic cancer. Vaccine 28, 4937–4944 (2010)PubMedGoogle Scholar
  15. 15.
    Germann, T., Rude, E., Schmitt, E.: The influence of IL12 on the development of Th1 and Th2 cells and its adjuvant effect for humoral immune responses. Res. Immunol. 146, 481–486 (1995)PubMedGoogle Scholar
  16. 16.
    Fifis, T., et al.: Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173, 3148–3154 (2004)PubMedGoogle Scholar
  17. 17.
    Chadwick, S., Kriegel, C., Amiji, M.: Nanotechnology solutions for mucosal immunization. Adv. Drug Deliv. Rev. 62, 394–407 (2010)PubMedGoogle Scholar
  18. 18.
    Randolph, G.J., Inaba, K., Robbiani, D.F., Steinman, R.M., Muller, W.A.: Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11, 753–761 (1999)PubMedGoogle Scholar
  19. 19.
    Malik, B., Goyal, A.K., Mangal, S., Zakir, F., Vyas, S.P.: Implication of gut immunology in the design of oral vaccines. Curr. Mol. Med. 10, 47–70 (2010)PubMedGoogle Scholar
  20. 20.
    Ada, G.: Vaccines and vaccination. N. Engl. J. Med. 345, 1042–1053 (2001)PubMedGoogle Scholar
  21. 21.
    Fehr, T., Skrastina, D., Pumpens, P., Zinkernagel, R.M.: T cell-independent type I antibody response against B cell epitopes expressed repetitively on recombinant virus particles. Proc. Natl. Acad. Sci. U.S.A. 95, 9477–9481 (1998)PubMedGoogle Scholar
  22. 22.
    Bachmann, M.F., et al.: The influence of antigen organization on B cell responsiveness. Science 262, 1448–1451 (1993)PubMedGoogle Scholar
  23. 23.
    Bachmann, M.F., Zinkernagel, R.M.: Neutralizing antiviral B cell responses. Annu. Rev. Immunol. 15, 235–270 (1997)PubMedGoogle Scholar
  24. 24.
    O’Hagan, D.T., Singh, M., Ulmer, J.B.: Microparticle-based technologies for vaccines. Methods 40, 10–19 (2006)PubMedGoogle Scholar
  25. 25.
    Uddin, A.N., Bejugam, N.K., Gayakwad, S.G., Akther, P., D’Souza, M.J.: Oral delivery of gastro-resistant microencapsulated typhoid vaccine. J. Drug Target. 17, 553–560 (2009)PubMedGoogle Scholar
  26. 26.
    Yeboah, K.G., D’Souza, M.J.: Evaluation of albumin microspheres as oral delivery system for Mycobacterium tuberculosis vaccines. J. Microencapsul. 26, 166–179 (2009)PubMedGoogle Scholar
  27. 27.
    Lai, Y.H., D’Souza, M.J.: Formulation and evaluation of an oral melanoma vaccine. J. Microencapsul. 24, 235–252 (2007)PubMedGoogle Scholar
  28. 28.
    Storni, T., Ruedl, C., Renner, W.A., Bachmann, M.F.: Innate immunity together with duration of antigen persistence regulate effector T cell induction. J. Immunol. 171, 795–801 (2003)PubMedGoogle Scholar
  29. 29.
    Thiele, L., Merkle, H.P., Walter, E.: Phagocytosis and phagosomal fate of surface-modified microparticles in dendritic cells and macrophages. Pharm. Res. 20, 221–228 (2003)PubMedGoogle Scholar
  30. 30.
    Akande, J., et al.: Targeted delivery of antigens to the gut-associated lymphoid tissues: 2. Ex vivo evaluation of lectin-labelled albumin microspheres for targeted delivery of antigens to the M-cells of the Peyer’s patches. J. Microencapsul. 27, 325–336 (2010)PubMedGoogle Scholar
  31. 31.
    Lai, Y.H., D’Souza, M.J.: Microparticle transport in the human intestinal M cell model. J. Drug Target. 16, 36–42 (2008)PubMedGoogle Scholar
  32. 32.
    Pulendran, B., Banchereau, J., Maraskovsky, E., Maliszewski, C.: Modulating the immune response with dendritic cells and their growth factors. Trends Immunol. 22, 41–47 (2001)PubMedGoogle Scholar
  33. 33.
    Banchereau, J., Steinman, R.M.: Dendritic cells and the control of immunity. Nature 392, 245–252 (1998)PubMedGoogle Scholar
  34. 34.
    Bharali, D.J., Pradhan, V., Elkin, G., Qi, W., Hutson, A., Mousa, S.A., Thanavala, Y.: Novel nanoparticles for the delivery of recombinant hepatitis B vaccine. Nanomedicine 4, 311–317 (2008)PubMedGoogle Scholar
  35. 35.
    Perrie, Y., Mohammed, A.R., Kirby, D.J., McNeil, S.E., Bramwell, V.W.: Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int. J. Pharm. 364, 272–280 (2008)PubMedGoogle Scholar
  36. 36.
    Sun, H.X., Xie, Y., Ye, Y.P.: ISCOMs and ISCOMATRIX. Vaccine 27, 4388–4401 (2009)PubMedGoogle Scholar
  37. 37.
    Quan, F.S., Vunnava, A., Compans, R.W., Kang, S.M.: Virus-like particle vaccine protects against 2009 H1N1 pandemic influenza virus in mice. PLoS One 5, e9161 (2010)PubMedGoogle Scholar
  38. 38.
    Tian, H.Y., et al.: Biodegradable cationic PEG-PEI-PBLG hyperbranched block copolymer: synthesis and micelle characterization. Biomaterials 26, 4209–4217 (2005)PubMedGoogle Scholar
  39. 39.
    Jackson, C.L., et al.: Visualization of dendrimer molecules by transmission electron microscopy (TEM): staining methods and cryo-TEM of vitrified solutions. Macromolecules 31, 6259–6265 (1998)Google Scholar
  40. 40.
    Klumpp, C., Kostarelos, K., Prato, M., Bianco, A.: Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta 1758, 404–412 (2006)PubMedGoogle Scholar
  41. 41.
    des Rieux, A., Fievez, V., Garinot, M., Schneider, Y.J., Preat, V.: Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control. Release 116, 1–27 (2006)PubMedGoogle Scholar
  42. 42.
    Rice-Ficht, A.C., Arenas-Gamboa, A.M., Kahl-McDonagh, M.M., Ficht, T.A.: Polymeric particles in vaccine delivery. Curr. Opin. Microbiol. 13, 106–112 (2010)PubMedGoogle Scholar
  43. 43.
    Xiang, S.D., et al.: Pathogen recognition and development of particulate vaccines: does size matter? Methods 40, 1–9 (2006)PubMedGoogle Scholar
  44. 44.
    Desai, M.P., Labhasetwar, V., Amidon, G.L., Levy, R.J.: Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res. 13, 1838–1845 (1996)PubMedGoogle Scholar
  45. 45.
    Primard, C., et al.: Traffic of poly(lactic acid) nanoparticulate vaccine vehicle from intestinal mucus to sub-epithelial immune competent cells. Biomaterials 31, 6060–6068 (2010)PubMedGoogle Scholar
  46. 46.
    Gutierro, I., Hernandez, R.M., Igartua, M., Gascon, A.R., Pedraz, J.L.: Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 21, 67–77 (2002). S0264410X02004358 [pii]PubMedGoogle Scholar
  47. 47.
    Wendorf, J., et al.: A comparison of anionic nanoparticles and microparticles as vaccine delivery systems. Hum. Vaccin. 4, 44–49 (2008)PubMedGoogle Scholar
  48. 48.
    van den Berg, J.H., et al.: Shielding the cationic charge of nanoparticle-formulated dermal DNA vaccines is essential for antigen expression and immunogenicity. J. Control. Release 141, 234–240 (2010)PubMedGoogle Scholar
  49. 49.
    Jain, A.K., et al.: Synthesis, characterization and evaluation of novel triblock copolymer based nanoparticles for vaccine delivery against hepatitis B. J. Control. Release 136, 161–169 (2009)PubMedGoogle Scholar
  50. 50.
    Demento, S., Steenblock, E.R., Fahmy, T.M.: Biomimetic approaches to modulating the T cell immune response with nano- and micro- particles. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 1161–1166 (2009)PubMedGoogle Scholar
  51. 51.
    Bangham, A.D., Standish, M.M., Miller, N.: Cation permeability of phospholipid model membranes: effect of narcotics. Nature 208, 1295–1297 (1965)PubMedGoogle Scholar
  52. 52.
    Allison, A.G., Gregoriadis, G.: Liposomes as immunological adjuvants. Nature 252, 252 (1974)PubMedGoogle Scholar
  53. 53.
    Castaldello, A., Brocca-Cofano, E., Voltan, R., Triulzi, C., Altavilla, G., Laus, M., Sparnacci, K., Ballestri, M., Tondelli, L., Fortini, C., Gavioli, R., Ensoli, B., Caputo, A.: DNA prime and protein boost immunization with innovative polymeric cationic core-shell nanoparticles elicits broad immune responses and strongly enhance cellular responses of HIV-1 tat DNA vaccination. Vaccine 24, 5655–5669 (2006)PubMedGoogle Scholar
  54. 54.
    Himeno, A., Akagi, T., Uto, T., Wang, X., Baba, M., Ibuki, K., Matsuyama, M., Horiike, M., Igarashi, T., Miura, T., Akashi, M.: Evaluation of the immune response and protective effects of rhesus macaques vaccinated with biodegradable nanoparticles carrying gp120 of human immunodeficiency virus. Vaccine 28, 5377–5385 (2010)PubMedGoogle Scholar
  55. 55.
    Caputo, A., Castaldello, A., Brocca-Cofano, E., Voltan, R., Bortolazzi, F., Altavilla, G., Sparnacci, K., Laus, M., Tondelli, L., Gavioli, R., Ensoli, B.: Induction of humoral and enhanced cellular immune responses by novel core-shell nanosphere- and microsphere-based vaccine formulations following systemic and mucosal administration. Vaccine 27, 3605–3615 (2009)PubMedGoogle Scholar
  56. 56.
    Stano, A., van der Vlies, A.J., Martino, M.M., Swartz, M.A., Hubbell, J.A., Simeoni, E.: PPS nanoparticles as versatile delivery system to induce systemic and broad mucosal immunity after intranasal administration. Vaccine 29(4), 804–812 (2011)PubMedGoogle Scholar
  57. 57.
    Hirosue, S., Kourtis, I.C., van der Vlies, A.J., Hubbell, J.A., Swartz, M.A.: Antigen delivery to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides: cross-presentation and T cell activation. Vaccine 28, 7897–7906 (2010)PubMedGoogle Scholar
  58. 58.
    Slutter, B., Bal, S., Keijzer, C., Mallants, R., Hagenaars, N., Que, I., Kaijzel, E., van Eden, W., Augustijns, P., Lowik, C., Bouwstra, J., Broere, F., Jiskoot, W.: Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 28, 6282–6291 (2010)PubMedGoogle Scholar
  59. 59.
    Prego, C., Paolicelli, P., Diaz, B., Vicente, S., Sanchez, A., Gonzalez-Fernandez, A., Alonso, M.J.: Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine 28, 2607–2614 (2010)PubMedGoogle Scholar
  60. 60.
    Gregoriadis, G.: Liposomes as immunoadjuvants and vaccine carriers: antigen entrapment. Immunomethods 4, 210–216 (1994)PubMedGoogle Scholar
  61. 61.
    Wang, D., et al.: Liposomal oral DNA vaccine (mycobacterium DNA) elicits immune response. Vaccine 28, 3134–3142 (2010)PubMedGoogle Scholar
  62. 62.
    Karkada, M., Weir, G.M., Quinton, T., Fuentes-Ortega, A., Mansour, M.: A liposome-based platform, VacciMax, and its modified water-free platform DepoVax enhance efficacy of in vivo nucleic acid delivery. Vaccine 28, 6176–6182 (2010)PubMedGoogle Scholar
  63. 63.
    Altin, J.G., Parish, C.R.: Liposomal vaccines–targeting the delivery of antigen. Methods 40, 39–52 (2006)PubMedGoogle Scholar
  64. 64.
    Immordino, M.L., Dosio, F., Cattel, L.: Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine 1, 297–315 (2006)PubMedGoogle Scholar
  65. 65.
    Mohammed, A.R., Bramwell, V.W., Kirby, D.J., McNeil, S.E., Perrie, Y.: Increased potential of a cationic liposome-based delivery system: enhancing stability and sustained immunological activity in pre-clinical development. Eur. J. Pharm. Biopharm. 76(3), 404–412 (2010)PubMedGoogle Scholar
  66. 66.
    Nordly, P., Agger, E.M., Andersen, P., Nielsen, H.M., Foged, C.: Incorporation of the TLR4 agonist monophosphoryl lipid a into the bilayer of DDA/TDB liposomes: physico-chemical characterization and induction of CD8(+) T-cell responses in vivo. Pharm. Res. 28(3), 553–562 (2011)PubMedGoogle Scholar
  67. 67.
    Henriksen-Lacey, M., et al.: Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen. J. Control. Release 142, 180–186 (2010)PubMedGoogle Scholar
  68. 68.
    Gasparini, R., Lai, P.: Utility of virosomal adjuvated influenza vaccines: a review of the literature. J. Prev. Med. Hyg. 51, 1–6 (2010)PubMedGoogle Scholar
  69. 69.
    Patel, G.B., Zhou, H., KuoLee, R., Chen, W.: Archaeosomes as adjuvants for combination vaccines. J. Liposome Res. 14, 191–202 (2004)PubMedGoogle Scholar
  70. 70.
    Sharma, S., Mukkur, T.K., Benson, H.A., Chen, Y.: Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J. Pharm. Sci. 98, 812–843 (2009)PubMedGoogle Scholar
  71. 71.
    Henriksen-Lacey, M., et al.: Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response. J. Control. Release 145, 102–108 (2010)PubMedGoogle Scholar
  72. 72.
    Zhong, Z., et al.: A novel liposomal vaccine improves humoral immunity and prevents tumor pulmonary metastasis in mice. Int. J. Pharm. 399, 156–162 (2010)PubMedGoogle Scholar
  73. 73.
    Pearse, M.J., Drane, D.: ISCOMATRIX adjuvant: a potent inducer of humoral and cellular immune responses. Vaccine 22, 2391–2395 (2004)PubMedGoogle Scholar
  74. 74.
    Pearse, M.J., Drane, D.: ISCOMATRIX adjuvant for antigen delivery. Adv. Drug Deliv. Rev. 57, 465–474 (2005)PubMedGoogle Scholar
  75. 75.
    Drane, D., Pearse, M.J.: Immunopotentiators in modern vaccines, pp. 191–215. Elsevier Academic Press, Massachusetts, USA (2006)Google Scholar
  76. 76.
    Rimmelzwaan, G.F., Baars, M., van Amerongen, G., van Beek, R., Osterhaus, A.D.: A single dose of an ISCOM influenza vaccine induces long-lasting protective immunity against homologous challenge infection but fails to protect Cynomolgus macaques against distant drift variants of influenza A (H3N2) viruses. Vaccine 20, 158–163 (2001)PubMedGoogle Scholar
  77. 77.
    Souza, M., Costantini, V., Azevedo, M.S., Saif, L.J.: A human norovirus-like particle vaccine adjuvanted with ISCOM or mLT induces cytokine and antibody responses and protection to the homologous GII.4 human norovirus in a gnotobiotic pig disease model. Vaccine 25, 8448–8459 (2007)PubMedGoogle Scholar
  78. 78.
    Rimmelzwaan, G.F., Claas, E.C., van Amerongen, G., de Jong, J.C., Osterhaus, A.D.: ISCOM vaccine induced protection against a lethal challenge with a human H5N1 influenza virus. Vaccine 17, 1355–1358 (1999)PubMedGoogle Scholar
  79. 79.
    Sjolander, S., Drane, D., Davis, R., Beezum, L., Pearse, M., Cox, J.: Intranasal immunisation with influenza-ISCOM induces strong mucosal as well as systemic antibody and cytotoxic T-lymphocyte responses. Vaccine 19, 4072–4080 (2001)PubMedGoogle Scholar
  80. 80.
    Madhun, A.S., Haaheim, L.R., Nilsen, M.V., Cox, R.J.: Intramuscular Matrix-M-adjuvanted virosomal H5N1 vaccine induces high frequencies of multifunctional Th1 CD4+ cells and strong antibody responses in mice. Vaccine 27, 7367–7376 (2009)PubMedGoogle Scholar
  81. 81.
    Sanders, M.T., Deliyannis, G., Pearse, M.J., McNamara, M.K., Brown, L.E.: Single dose intranasal immunization with ISCOMATRIX vaccines to elicit antibody-mediated clearance of influenza virus requires delivery to the lower respiratory tract. Vaccine 27, 2475–2482 (2009)PubMedGoogle Scholar
  82. 82.
    Skene, C.D., Doidge, C., Sutton, P.: Evaluation of ISCOMATRIX and ISCOM vaccines for immunisation against Helicobacter pylori. Vaccine 26, 3880–3884 (2008)PubMedGoogle Scholar
  83. 83.
    Pinitkiatisakul, S., Friedman, M., Wikman, M., Mattsson, J.G., Lovgren-Bengtsson, K., Stahl, S., Lunden, A.: Immunogenicity and protective effect against murine cerebral neosporosis of recombinant NcSRS2 in different iscom formulations. Vaccine 25, 3658–3668 (2007)PubMedGoogle Scholar
  84. 84.
    McBurney, W.T., et al.: In vivo activity of cationic immune stimulating complexes (PLUSCOMs). Vaccine 26, 4549–4556 (2008)PubMedGoogle Scholar
  85. 85.
    Boyle, J., et al.: The utility of ISCOMATRIX adjuvant for dose reduction of antigen for vaccines requiring antibody responses. Vaccine 25, 2541–2544 (2007)PubMedGoogle Scholar
  86. 86.
    Plummer, E.M., Manchester, M: Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. WIREs Nanomed. Nanobiotechnol. 3, 174–196 (2011). doi:10.1002/wnan.119
  87. 87.
    Noad, R., Roy, P.: Virus-like particles as immunogens. Trends Microbiol. 11, 438–444 (2003)PubMedGoogle Scholar
  88. 88.
    Campo, M.S., Roden, R.B.: Papillomavirus prophylactic vaccines: established successes, new approaches. J. Virol. 84, 1214–1220 (2010)PubMedGoogle Scholar
  89. 89.
    Ludwig, C., Wagner, R.: Virus-like particles-universal molecular toolboxes. Curr. Opin. Biotechnol. 18, 537–545 (2007)PubMedGoogle Scholar
  90. 90.
    Buonaguro, L., Tornesello, M.L., Buonaguro, F.M.: Virus-like particles as particulate vaccines. Curr. HIV Res. 8, 299–309 (2010)PubMedGoogle Scholar
  91. 91.
    Grgacic, E.V., Anderson, D.A.: Virus-like particles: passport to immune recognition. Methods 40, 60–65 (2006)PubMedGoogle Scholar
  92. 92.
    Schiller, J.T., Castellsague, X., Villa, L.L., Hildesheim, A.: An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine 26(Suppl 10), K53–K61 (2008)PubMedGoogle Scholar
  93. 93.
    Pearton, M., et al.: Influenza virus-like particles coated onto microneedles can elicit stimulatory effects on Langerhans cells in human skin. Vaccine 28, 6104–6113 (2010)PubMedGoogle Scholar
  94. 94.
    Akahata, W., et al.: A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat. Med. 16, 334–338 (2010)PubMedGoogle Scholar
  95. 95.
    Quan, F.S., Huang, C., Compans, R.W., Kang, S.M.: Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. J. Virol. 81, 3514–3524 (2007)PubMedGoogle Scholar
  96. 96.
    Krammer, F., et al.: Influenza virus-like particles as an antigen-carrier platform for the ESAT-6 epitope of Mycobacterium tuberculosis. J. Virol. Methods 167, 17–22 (2010)PubMedGoogle Scholar
  97. 97.
    Song, J.M., et al.: Protective immunity against H5N1 influenza virus by a single dose vaccination with virus-like particles. Virology 405, 165–175 (2010)PubMedGoogle Scholar
  98. 98.
    Kang, S.M., et al.: Induction of long-term protective immune responses by influenza H5N1 virus-like particles. PLoS One 4, e4667 (2009)PubMedGoogle Scholar
  99. 99.
    Muratori, C., Bona, R., Federico, M.: Lentivirus-based virus-like particles as a new protein delivery tool. Methods Mol. Biol. 614, 111–124 (2010)PubMedGoogle Scholar
  100. 100.
    Torchilin, V.P.: Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release 73, 137–172 (2001)PubMedGoogle Scholar
  101. 101.
    Torchilin, V.P.: Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res. 24, 1–16 (2007)PubMedGoogle Scholar
  102. 102.
    O’Reilly, R.K.: Spherical polymer micelles: nanosized reaction vessels? Philos. Transact. A Math. Phys. Eng. Sci. 365, 2863–2878 (2007)Google Scholar
  103. 103.
    Morein, B., Sharp, M., Sundquist, B., Simons, K.: Protein subunit vaccines of parainfluenza type 3 virus: immunogenic effect in lambs and mice. J. Gen. Virol. 64(Pt 7), 1557–1569 (1983)PubMedGoogle Scholar
  104. 104.
    Prabakaran, M., et al.: Reverse micelle-encapsulated recombinant baculovirus as an oral vaccine against H5N1 infection in mice. Antiviral Res. 86, 180–187 (2010)PubMedGoogle Scholar
  105. 105.
    Bharali, D.J., Khalil, M., Gurbuz, M., Simone, T.M., Mousa, S.A.: Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int. J. Nanomedicine 4, 1–7 (2009)PubMedGoogle Scholar
  106. 106.
    Patri, A.K., Majoros, I.J., Baker, J.R.: Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol. 6, 466–471 (2002)PubMedGoogle Scholar
  107. 107.
    Klajnert, B., Bryszewska, M.: Dendrimers: properties and applications. Acta Biochim. Pol. 48, 199–208 (2001)PubMedGoogle Scholar
  108. 108.
    Baker, J. R., Jr.: Dendrimer-based nanoparticles for cancer therapy. Hematology. Am. Soc. Hematol. Educ. Program. 1, 708–719 (2009)Google Scholar
  109. 109.
    Moreno, C.A., et al.: Preclinical evaluation of a synthetic Plasmodium falciparum MAP malaria vaccine in Aotus monkeys and mice. Vaccine 18, 89–99 (1999)PubMedGoogle Scholar
  110. 110.
    Nardin, E.H., et al.: A totally synthetic polyoxime malaria vaccine containing Plasmodium falciparum B cell and universal T cell epitopes elicits immune responses in volunteers of diverse HLA types. J. Immunol. 166, 481–489 (2001)PubMedGoogle Scholar
  111. 111.
    Nardin, E.H., et al.: Synthetic malaria peptide vaccine elicits high levels of antibodies in vaccinees of defined HLA genotypes. J. Infect. Dis. 182, 1486–1496 (2000)PubMedGoogle Scholar
  112. 112.
    Shampur, M., Padinjarenmattathil, U., Desai, A., Narayanaswamy, J.: Development and immunogenicity of a novel polyetherimine (PETIM) dendrimer based nanoformulated DNA rabies vaccine. Int. J. Infect. Dis. 14(Suppl 1), E453 (2010). Elsevier ScienceGoogle Scholar
  113. 113.
    Dutta, T., Garg, M., Jain, N.K.: Poly(propyleneimine) dendrimer and dendrosome mediated genetic immunization against hepatitis B. Vaccine 26, 3389–3394 (2008)PubMedGoogle Scholar
  114. 114.
    Skwarczynski, M., Zaman, M., Urbani, C.N., Lin, I.C., Jia, Z., Batzloff, M.R., Good, M.F., Monteiro, M.J., Toth, I.: Polyacrylate dendrimer nanoparticles: a self-adjuvanting vaccine delivery system. Angew. Chem. Int. Ed. Engl. 49, 5742–5745 (2010)PubMedGoogle Scholar
  115. 115.
    in het Panhuis, M.: Vaccine delivery by carbon nanotubes. Chem. Biol. 10, 897–898 (2003)Google Scholar
  116. 116.
    Kendall, M.: Engineering of needle-free physical methods to target epidermal cells for DNA vaccination. Vaccine 24, 4651–4656 (2006). doi:10.1016/j.vaccine.2005.08.066. S0264-410X(05)00841-8 [pii]PubMedGoogle Scholar
  117. 117.
    Kersten, G., Hirschberg, H.: Antigen delivery systems. Expert Rev. Vaccines 3, 453–462 (2004). doi:10.1586/14760584.3.4.453. ERV030423 [pii]PubMedGoogle Scholar
  118. 118.
    Nandedkar, T.D.: Nanovaccines: recent developments in vaccination. J. Biosci. 34, 995–1003 (2009)PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Martin J. D’Souza
    • 1
  • Suprita A. Tawde
    • 2
  • Archana Akalkotkar
    • 1
  • Lipika Chablani
    • 3
  • Marissa D’Souza
    • 1
  • Maurizio Chiriva-Internati
    • 4
  1. 1.Vaccine Nanotechnology Laboratory, Department of Pharmaceutical SciencesCollege of Pharmacy and Health Sciences, Mercer UniversityAtlantaUSA
  2. 2.Akorn IncVernon HillsUSA
  3. 3.Department of Pharmaceutical SciencesSt. John Fisher College, Wegmans School of PharmacyRochesterUSA
  4. 4.Texas Tech University Health Science Center, School of MedicineLubbockUSA

Personalised recommendations