Slope Instability of Glaciated Continental Margins: Constraints from Permeability-Compressibility Tests and Hydrogeological Modeling Off Storfjorden, NW Barents Sea

  • J. Llopart
  • R. Urgeles
  • A. Camerlenghi
  • R. G. Lucchi
  • B. De Mol
  • M. Rebesco
  • M. T. Pedrosa
Chapter
Part of the Advances in Natural and Technological Hazards Research book series (NTHR, volume 37)

Abstract

Climate variations control sediment supply to the continental slope as well as glacial advances and retreats, which (a) cause significant stress changes in the sedimentary column and redistribution of interstitial fluids, (b) induce a particular margin stratigraphic pattern and permeability architecture and (c) are at the origin of isostatic adjustments that may reactivate faults. We test this hypothesis using a combination of geophysical and geotechnical data from the Storfjorden Trough Mouth Fan, off southern Svalbard. The results of compressibility and permeability testing are used together with margin stratigraphic models obtained from seismic reflection data, as input for numerical finite elements models to understand focusing of interstitial fluids in glaciated continental margins and influence on timing and location of submarine slope failure. Available results indicate values of overpressure of 0.23–0.5 (slope-shelf) that persist to present-day. This overpressure started to develop in response to onset of Pleistocene glaciations and reduced by half the factor of safety of the continental slope.

Keywords

Overpressure Hydrogeology Factor of safety Storfjorden Barents Sea Hydrogeologic model 

Notes

Acknowledgements

This study is funded by the “Ministerio Economia y Competitividad” through grants DEGLABAR, (CTM2010-17386), CORIBAR-ES (CTM2011-14807-E) and SVAIS (POL2006-07390). UNESCO and IUGS are also acknowledged for funding through project IGCP-585. The “Generalitat de Catalunya” is acknowledged for support through an excellence research group grant (2009-SGR-146). K. Andreassen and S. Clarke are thanked for their comments and positive criticism.

References

  1. Bitzer K (1996) Modelling consolidation sedimentary and fluid basins flow. Comput Geosci 22:467–478CrossRefGoogle Scholar
  2. Bitzer K (1999) Two-dimensional simulation of clastic and carbonate sedimentation, consolidation, subsidence, fluid flow, heat flow and solute transport during the formation of sedimentary basins. Comput Geosci 25:431–447CrossRefGoogle Scholar
  3. Bugge T, Befring S, Belderson RH et al (1987) A giant three-stage submarine slide off Norway. Geo-Mar Lett 7:191–198CrossRefGoogle Scholar
  4. Butt FA, Elverhoi A, Solheim A et al (2000) Deciphering Late Cenozoic development of the western Svalbard Margin from ODP Site 986 results. Mar Geol 169:373–390. doi:10.1016/S0025-3227(00)00088-8 CrossRefGoogle Scholar
  5. Dimakis P, Elverhoi A, Hoeg K et al (2000) Submarine slope stability on high-latitude glaciated Svalbard–Barents Sea margin. Mar Geol 162:303–316. doi:10.1016/S0025-3227(99)00076-6 CrossRefGoogle Scholar
  6. Faleide JI, Solheim A, Fiedler A et al (1996) Late Cenozoic evolution of the western Barents Sea-Svalbard continental margin. Global Planet Change 12:53–74. doi:10.1016/0921-8181(95)00012-7 CrossRefGoogle Scholar
  7. Flemings P, Long H, Dugan B et al (2008) Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of Mexico. Earth Planet Sci Lett 269:309–325. doi:10.1016/j.epsl.2007.12.005 CrossRefGoogle Scholar
  8. Haflidason H, Lien R, Sejrup HP et al (2005) The dating and morphometry of the Storegga Slide. Mar Petrol Geol 22:123–136. doi:10.1016/j.marpetgeo.2004.10.008 CrossRefGoogle Scholar
  9. Karlsson R, Swedish Geotechnical Society, Laboratory Committee (1977) Consistency limits: a manual for the performance and interpretation of laboratory investigations. Statens rad for byggnads-forskning, Stockholm, pp 1–40Google Scholar
  10. Knies J, Matthiessen J, Vogt C et al (2009) The Plio-Pleistocene glaciation of the Barents Sea–Svalbard region: a new model based on revised chronostratigraphy. Quat Sci Rev 28:812–829. doi:10.1016/j.quascirev.2008.12.002 CrossRefGoogle Scholar
  11. Kvalstad TJ, Andresen L, Forsberg CF et al (2005) The Storegga slide: evaluation of triggering sources and slide mechanics. Mar Petrol Geol 22:245–256. doi:10.1016/j.marpetgeo.2004.10.019 CrossRefGoogle Scholar
  12. Laberg J, Vorren T, Dowdeswell J et al (2000) The Andøya Slide and the Andøya Canyon, north-eastern Norwegian–Greenland Sea. Mar Geol 162:259–275. doi:10.1016/S0025-3227(99)00087-0 CrossRefGoogle Scholar
  13. Laberg JS, Vorren TO, Mienert J et al (2002) Late Quaternary palaeoenvironment and chronology in the Trænadjupet Slide area offhore Norway. Mar Geol 188:35–60CrossRefGoogle Scholar
  14. Laberg JS, Andreassen K, Knies J et al (2010) Late Pliocene-Pleistocene development of the Barents Sea ice sheet. Geology 38:107–110. doi:10.1130/G30193.1 CrossRefGoogle Scholar
  15. Lucchi RG, Pedrosa MT, Camerlenghi A et al (2012) Recent submarine landslides on the continental slope of Storfjorden and Kveitehola Trough – Mouth Fans (NW Barents Sea). In: Yamada Y et al (eds) Submarine mass movements and their consequences, vol 31, Advances in natural and technological hazards research., pp 735–745. doi:10.1007/978-94-007-2162-3 CrossRefGoogle Scholar
  16. Mulder T, Moran K (1995) Relationship among submarine instabilities, sea level variations, and the presence of an ice sheet on the continental shelf: an example from the Verrill Canyon Area, Scotia Shelf. Paleoceanography 10:137–154CrossRefGoogle Scholar
  17. Rebesco M, Pedrosa MT, Camerlenghi A et al (2012) One million years of climatic generated landslide events on the northwestern Barents Sea continental margin. In: Yamada Y et al (eds) Submarine mass movements and their consequences, vol 31, Advances in natural and technological hazards research. Springer, Dordrecht, pp 747–756CrossRefGoogle Scholar
  18. Shaver RB (1998) The determination of glacial till specific storage in North Dakota. Ground Water 32:552–557CrossRefGoogle Scholar
  19. Urgeles R, Locat J, Sawyer DE et al (2010) History of pore pressure build up and slope instability in mud-dominated sediments of Ursa Basin, Gulf of Mexico continental slope. In: Mosher DC (ed) Submarine mass movements and their consequences, vol 28, Advances in natural and technological hazards research. Springer, Dordrecht, pp 179–190Google Scholar
  20. Van Hinte JE (1978) Geohistory analysis; application of micropaleontology in exploration geology. AAPG Bull 62:201–222Google Scholar
  21. Vanneste M, Mienert J, Bunz S (2006) The Hinlopen Slide: a giant, submarine slope failure on the northern Svalbard margin, Arctic Ocean. Earth Planet Sci Lett 245:373–388. doi:10.1016/j.epsl.2006.02.045 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • J. Llopart
    • 1
  • R. Urgeles
    • 1
  • A. Camerlenghi
    • 2
  • R. G. Lucchi
    • 2
  • B. De Mol
    • 1
  • M. Rebesco
    • 2
  • M. T. Pedrosa
    • 3
  1. 1.Dept. Geociències MarinesInstitut de Ciències del Mar (CSIC)BarcelonaSpain
  2. 2.Geophysics Research SectionIstituto Nazionale di Oceanografia e Geofisica Sperimentale-OGSTriesteItaly
  3. 3.Instituto Andaluz de Ciencias de la Tierra-IACTGranadaSpain

Personalised recommendations