Modeling of Potential Landslide Tsunami Hazards Off Western Thailand (Andaman Sea)

  • Julia SchwabEmail author
  • Sebastian Krastel
  • Mohammad Heidarzadeh
  • Sascha Brune
Part of the Advances in Natural and Technological Hazards Research book series (NTHR, volume 37)


We model several scenarios of potential submarine landslide tsunamis in the Andaman Sea off the Thai west coast. Our results suggest that landslides may be capable of producing significant tsunamis. Two categories of submarine landslide scenarios were evaluated. Geometry parameters of the first category are taken from identified mass transport deposits (MTDs); the second category considers a potentially unstable block identified in seismic data. Our preliminary modeling approach shows that run-up values may reach significant tsunami heights for some scenarios. We point out that our results have to be regarded as only preliminary due to several limitations in our modeling approach. Our results, however, show the need for more sophisticated modeling of landslide tsunamis, especially regarding the failure process and inundation on dry land


Wave Height Slope Failure Tsunami Hazard Tsunami Warning Submarine Landslide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The TUNAMI-N2 code is originally authored by Fumihiku Imamura and Nobou Shuto and copyrighted to Ahmet C. Yalciner, Fumihiku Imamura and Costas E. Synolakis. We acknowledge them for developing and making available the code. We thank the reviewers Hermann Fritz and Marc de Batist for their careful reviews and constructive comments that helped to improve the manuscript.


  1. Brune S, Babeyko AY, Ladage S, Sobolev SV (2010a) Landslide tsunami hazard in the Indonesian Sunda Arc. Nat Hazards Earth Sys 10:589–604. doi: 10.5194/nhess-10-589-2010 CrossRefGoogle Scholar
  2. Brune S, Ladage S, Babeyko AY et al (2010b) Submarine landslides at the eastern Sunda margin: observations and tsunami impact assessment. Nat Hazards 54:547–562. doi: 10.1007/s11069-009-9487-8 CrossRefGoogle Scholar
  3. Fritz HM, Hillaire JV, Molière E, Wei E, Mohammed F (2012) Twin tsunamis triggered by the 12 January 2010 Haiti earthquake. Pure Appl Geophys. doi: 10.1007/s00024-012-0479-3 Google Scholar
  4. Goto C, Ogawa Y, Shuto N, Imamura F (1997) IUGG/IOC TIME Project: numerical method of tsunami simulation with the leap-frog scheme. In Intergovernmental Oceanographic Commission of UNESCO, manuals and guides no. 35, UNESCOGoogle Scholar
  5. Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure. Part I: modeling, experimental validation, and sensitivity analysis. Waterw Port C-ASCE 131(6):283–297CrossRefGoogle Scholar
  6. IOC, IHO, BODC (2003) Centenary edition of the GEBCO digital atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the general bathymetric chart of the oceans. British oceanographic data centre, LiverpoolGoogle Scholar
  7. Jankaew K, Atwater BF, Sawai Y et al (2008) Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature 455:1228–1231. doi: 10.1038/nature07373 CrossRefGoogle Scholar
  8. Jintasaeranee P, Weinrebe W, Klaucke I et al (2012) Morphology of the Andaman outer shelf and upper slope of the Thai exclusive economic zone. J Asian Earth Sci 46:78–85CrossRefGoogle Scholar
  9. Masson DG, Harbitz CB, Wynn RB et al (2006) Submarine landslides: processes, triggers and hazard prediction. Philos Trans R Soc A 364:2009–2039CrossRefGoogle Scholar
  10. Mohammed F, Fritz HM (2012) Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. J Geophys Res 117(C11):C11015CrossRefGoogle Scholar
  11. Monecke K, Finger W, Klarer D et al (2008) A 1,000-year sediment record of tsunami recurrence in northern Sumatra. Nature 455:1232–1234. doi: 10.1038/nature07374 CrossRefGoogle Scholar
  12. Schwab JM, Krastel S, Grün M et al (2012) Submarine mass wasting and associated tsunami risk offshore western Thailand, Andaman Sea, Indian Ocean. Nat Hazards Earth Sys 12:609–2630. doi: 10.5194/nhess-12-2609-2012 CrossRefGoogle Scholar
  13. Synolakis CE, Bardet J-P, Borrero JC et al (2002) The slump origin of the 1998 Papua New Guinea tsunami. Proc R Soc Lond A 458:763–789CrossRefGoogle Scholar
  14. Ward SN, Asphaug E (2003) Asteroid impact tsunami of 2880 March 16. Geophys J Int 153:F6–F10. doi: 10.1046/j.1365-246X.2003.01944.x CrossRefGoogle Scholar
  15. Ward SN, Day S (2008) Tsunami balls: a granular approach to tsunami runup and inundation. Commun Comput Phys 3(1):222–249Google Scholar
  16. Watts P, Grilli ST, Tappin D, Fryer GJ (2005) Tsunami generation by submarine mass failure. Part II: predictive equations and case studies. Waterw Port C-ASCE 131(6):298–310CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Julia Schwab
    • 1
    Email author
  • Sebastian Krastel
    • 2
  • Mohammad Heidarzadeh
    • 3
  • Sascha Brune
    • 4
  1. 1.Helmholtz Centre for Ocean Research, GEOMARKielGermany
  2. 2.Institute of GeosciencesChristian-Albrechts-Universität zu KielKielGermany
  3. 3.Cluster of Excellence “The Future Ocean”, Institute of GeosciencesChristian-Albrechts Universität zu KielKielGermany
  4. 4.GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations