Modeling Potential Tsunami Generation by the BIG’95 Landslide

  • Finn Løvholt
  • Carl B. Harbitz
  • Maarten Vanneste
  • Fabio V. De Blasio
  • Roger Urgeles
  • Olaia Iglesias
  • Miquel Canals
  • Galderic Lastras
  • Geir Pedersen
  • Sylfest Glimsdal
Chapter
Part of the Advances in Natural and Technological Hazards Research book series (NTHR, volume 37)

Abstract

The BIG’95 landslide was emplaced 11,500 years ago and is one of the largest known submarine landslides in the Mediterranean Sea. The simulated landslide dynamics matches the observed run-out and deposited thickness. Water elevation simulated by using a dispersive tsunami model exceed 10 m close to the landslide area and at the nearest shorelines. Modeling further indicates that the tsunami probably had widespread consequences in the Mediterranean. Compared to previous studies, this new simulation provides larger waves. There is, however, still a need to better constrain the landslide dynamics in order to illuminate the uncertainties related to the tsunamigenic power of this, and other, submarine landslides.

Keywords

Submarine landslide Slope failure Tsunami Frequency dispersion BIG’95 

Notes

Acknowledgements

The study was financially supported by the EU FP6 project TRANSFER (Tsunami Risk and Strategies for the European Region, contract no. 037058), and the Research Council of Norway (RCN) under project no. 205184. The Norwegian Geotechnical Institute (NGI), and the International Centre for Geohazards (ICG) are also thanked for supporting the work on this manuscript. Reviewers Dr. Peter Talling and Dr. Filippo Zaniboni are thanked for their valuable comments and positive criticism on the manuscript. This is contribution no. 418 of the International Centre for Geohazards (ICG).

References

  1. Assier Rzadkiewicz S, Mariotti C, Heinrich P (1997) Numerical simulation of submarine landslides and their hydraulic effect. J Waterw Port Coast Ocean Eng ASCE 123(4):149–157CrossRefGoogle Scholar
  2. Canals M, Casamor JL, Urgeles R et~al. (2000) The Ebro continental margin, Western Mediterranean Sea: interplay between canyon-channel systems and mass wasting processes. In: Nelson CH, Weimer P (eds) Deep-water reservoirs of the world: SEPM, Gulf Coast Section, 20th annual conference, Houston, TX, USA, pp 152–174Google Scholar
  3. Glimsdal S, Pedersen G, Harbitz CB et~al. (2013) Dispersive tsunamis; does it really matter? Nat Hazards Earth Syst Sci 13:1507–1526. www.nat-hazards-earth-syst-sci.net/13/1507/2013/. doi:10.5194/nhess-13-1507-2013
  4. Harbitz CB, Løvholt F, Pedersen G et al (2006) Mechanisms of tsunami generation by submarine landslides: a short review. Nor J Geol 86:255–264Google Scholar
  5. Iglesias O, Lastras G, Canals M et al (2012) The BIG’95 submarine landslide-generated tsunami: a numerical simulation. J Geol 120:31–48CrossRefGoogle Scholar
  6. Imran J, Harff P, Parker G (2001) A numerical model of submarine debris flow with graphical user interface. Comput Geosci 27:717–729CrossRefGoogle Scholar
  7. Kajiura K (1963) The leading wave of a tsunami. Bull Earthq Res Inst 41:535–571Google Scholar
  8. Lastras G, Canals M, Hughes Clarke JE, Moreno A, De Batist M, Masson DG, Cochonat P (2002) Seafloor imagery from the BIG’95 debris flow, western Mediterranean. Geology 30:871–874CrossRefGoogle Scholar
  9. Lastras G, Canals M, Urgeles R et al (2004) Characterisation of a recent debris flow deposit after a variety of seismic reflection data, Ebro margin, western Mediterranean. Mar Geol 213:235–255CrossRefGoogle Scholar
  10. Lastras G, de Blasio FV, Canals M, Elverhøi A (2005) Conceptual and numerical modeling of the BIG’95 debris flow, Western Mediterranean Sea. J Sediment Res 75:784–797CrossRefGoogle Scholar
  11. Locat J, Lee H (2002) Submarine landslides: advances and challenges. Can Geotech J 39:193–212CrossRefGoogle Scholar
  12. Løvholt F, Harbitz CB, Haugen KB (2005) A parametric study of tsunamis generated by submarine slides in the Ormen Lange/Storegga area off western Norway. Mar Petrol Geol 22(1–2):219–233CrossRefGoogle Scholar
  13. Løvholt F, Pedersen G, Gisler G (2008) Oceanic propagation of a potential tsunami from the La Palma Island. J Geophys Res 113:C09026. doi:10.1029/2007JC004603 Google Scholar
  14. Løvholt F, Pedersen G, Glimsdal S (2010) Coupling of dispersive tsunami propagation and shallow water coastal response. Open Oceanogr J Caribb Waves Spec Issue 4:71–82. doi:10.2174/1874252101004020071 Google Scholar
  15. Løvholt F, Pedersen GK, Bazin S, Kühn D, Bredesen RE, Harbitz CB (2012) Stochastic analysis of tsunami runup due to heterogeneous coseismic slip and dispersion. J Geophys Res 117:C03047. doi:10.1029/2011JC007616 Google Scholar
  16. Lynett PJ, Borrero JC, Liu PL-F, Synolakis CE (2003) Field survey and numerical simulations: a review of the 1998 Papua New Guinea tsunami. Pure Appl Geophys 160:2119–2146CrossRefGoogle Scholar
  17. Marr JG, Elverhøi A, Harbitz CB, Imran J, Harrf P (2002) Numerical simulation of mud-rich subaqueous debris flows on the glacially active margins of the Svalbard-Barents Sea. Mar Geol 188:351–364CrossRefGoogle Scholar
  18. Norem H, Locat J, Schieldrop BA (1990) An approach to the physics and the modeling of submarine flowslides. Mar Geotechnol 9(2):93–111CrossRefGoogle Scholar
  19. Okal EA, Synolakis CE (2004) Source discriminants for near-field tsunamis. Geophys J Int 158:899–912CrossRefGoogle Scholar
  20. Urgeles R, Leynaud D, Lastras G et al (2006) Back-analysis and failure mechanisms of a large submarine slide on the Ebro continental slope, NW Mediterranean. Mar Geol 226:185–206CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Finn Løvholt
    • 1
    • 2
  • Carl B. Harbitz
    • 2
    • 3
  • Maarten Vanneste
    • 1
  • Fabio V. De Blasio
    • 4
    • 5
  • Roger Urgeles
    • 6
  • Olaia Iglesias
    • 7
  • Miquel Canals
    • 7
  • Galderic Lastras
    • 7
  • Geir Pedersen
    • 2
  • Sylfest Glimsdal
    • 2
    • 3
  1. 1.Offshore EnergyNorwegian Geotechnical Institute (NGI)OsloNorway
  2. 2.Department of MathematicsUniversity of OsloOsloNorway
  3. 3.Natural HazardsNorwegian Geotechnical Institute (NGI)OsloNorway
  4. 4.Department of Earth SciencesUniversità di Roma “Sapienza”RomeItaly
  5. 5.Università di Milano “Bicocca”MilanItaly
  6. 6.Dept. Geociències MarinesInstitut de Cències del Mar (CSIC)BarcelonaSpain
  7. 7.GRC Geociències MarinesUniversitat de BarcelonaCataloniaSpain

Personalised recommendations