Mass Wasting Along Atlantic Continental Margins: A Comparison Between NW-Africa and the de la Plata River Region (Northern Argentina and Uruguay)

  • S. KrastelEmail author
  • J. Lehr
  • D. Winkelmann
  • T. Schwenk
  • B. Preu
  • M. Strasser
  • R. B. Wynn
  • A. Georgiopoulou
  • T. J. J. Hanebuth
Part of the Advances in Natural and Technological Hazards Research book series (NTHR, volume 37)


The passive continental margins of the Atlantic Ocean are characterized by thick sedimentary successions, which might become unstable resulting in landslides of various sizes. The type of mass-wasting differs between individual margin sections but the reasons for these differences are not well understood. The NW-African continental margin is characterized by several large-scale but infrequent landslides, while the continental margin in the de la Plata River region (northern Argentina and Uruguay) shows widespread small-scale mass transport deposits. These different styles of mass wasting can be explained by different oceanographic and sedimentary settings. The margin off Northwest Africa is characterized by high primary productivity caused by oceanic upwelling as well as locally focused aeolian input resulting in relatively high sedimentation rates. This setting leads to sediment instabilities arising primarily from underconsolidation of deposited sediments and widespread weak layers. In contrast, the modern ocean margin off Uruguay and northern Argentina is characterized by strong contour currents and a high amount of fluvial sediment resulting in widespread contouritic deposits. These contourites are potentially unstable leading to smaller but more frequent landslides.


Submarine landslides Passive margins Atlantic Ocean Acoustic imaging 



We thank all scientists and crew who supported data collection during numerous cruises. The authors are thankful to Domenico Ridente and Asrar Talukder for their reviews and constructive comments. Financial support was provided by the Deutsche Forschungsgemeinschaft.


  1. Benavídez Sosa A (1998) Sismicidad y sismotectónica en Uruguay. Física de la Tierra 10:167–186Google Scholar
  2. Bondevik S, Lovholt F, Harbitz CB et al (2005) The Storegga Slide tsunami – comparing field observations with numerical simulations. Mar Petrol Geol 22:195–208CrossRefGoogle Scholar
  3. Booth JS, O’Leary DW, Popenoe P et al (1993) U.S. Atlantic continental slope landslides: their distribution, general attributes, and implications. In: Schwab WC, Lee HJ, Twichell DC (eds) Submarine landslides: selected studies in the U.S. Exclusive Economic Zone, U.S. Geological Survey bulletin 2002. U.S. Geological Survey, Denver, pp 14–22Google Scholar
  4. Camerlenghi A, Urgeles R, Ercilla G et al (2007) Scientific ocean drilling behind the assessment of geo-hazards from submarine slides. Sci Drill 4:45–47CrossRefGoogle Scholar
  5. Galy V, France-Lanord C, Beyssac O et al (2007) Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450:407–411CrossRefGoogle Scholar
  6. Georgiopoulou A, Masson DG, Wynn RB et al (2010) The Sahara Slide: initiation and processes from headwall to deposit of a giant submarine slide. Geochem Geophys Geosyst 11(7). doi: 10.1029/2010GC003066
  7. Gilberto DA, Bermec CS, Acha EM et al (2004) Large-scale spatial patterns of benthic assemblages in the SW Atlantic: the Rio de la Plata estuary and adjacent shelf waters. Estuar Coast Shelf Sci 61:1–13CrossRefGoogle Scholar
  8. Harbitz CB, Løvholt F, Pedersen G et al (2006) Mechanisms of tsunami generation by submarine landslides: a short review. Nor J Geol 86:255–264Google Scholar
  9. Henkel S, Strasser M, Schwenk T et al (2011) An interdisciplinary investigation of a recent submarine mass transport deposit at the continental margin off Uruguay. Geochem Geophys Geosyst 12(Q08009). doi: 10.1029/2011GC003669
  10. Hernández-Molina FJ, Paterlini M, Violante R et al (2009) Contourite depositional system on the Argentine Slope: an exceptional record of the influence of Antarctic water masses. Geology 37:507–510CrossRefGoogle Scholar
  11. Hühnerbach V, Masson DG, Project Partners (2004) An analysis of submarine landslide dynamics and processes in the North Atlantic. Mar Geol 213:343–362CrossRefGoogle Scholar
  12. Klaus A, Ledbetter MT (1988) Deep-sea sedimentary processes in the Argentine Basin revealed by high-resolution seismic records (3.5 kHz echograms). Deep-Sea Res 35:899–917CrossRefGoogle Scholar
  13. Krastel S, Wynn RB, Hanebuth TJJ et al (2006) Mapping of seabed morphology and shallow sediment structure of the Mauritania continental margin, Northwest Africa: some implications for geohazard potential. Nor J Geol 86:163–176Google Scholar
  14. Krastel S, Wefer G, Hanebuth TJJ et al (2011) Sediment dynamics and geohazards off Uruguay and the de la Plata River region (Northern-Argentina). Geo-Mar Lett 31:271–283CrossRefGoogle Scholar
  15. Krastel S, Wynn RB, Georgiopoulou A et al (2012) Large scale mass wasting at the NW-African Continental Margin: some general implications for mass wasting at passive continental margins. In: Yamada Y et al (eds) Submarine mass movements and their consequences, Advances in natural and technological hazards research 31. Springer, Dordrecht, pp 189–199CrossRefGoogle Scholar
  16. Laberg JS, Camerlenghi A (2008) The significance of contourites for submarine slope stability. In: Rebesco M, Camerlenghi A (eds) Contourites, vol 60, Developments in sedimentology. Elsevier, Amsterdam, pp 537–556CrossRefGoogle Scholar
  17. Lee HJ (2009) Timing of occurrence of large submarine landslides on the Atlantic Ocean margin. Mar Geol 264:53–64CrossRefGoogle Scholar
  18. Martinez P, Bertrand P, Shimmield GB et al (1999) Upwelling intensity and ocean productivity changes off Cape Blanc (Northwest Africa) during the last 70,000 years: geochemical and micropalaeontological evidence. Mar Geol 158:57–74CrossRefGoogle Scholar
  19. Masson DG, Wynn RB, Talling PJ (2010) Large landslides on passive continental margins: processes, hypotheses and outstanding questions. In: Mosher DC et al (eds) Submarine mass movements and their consequences, Advances in natural and technological hazards research 28. Springer, Dordrecht, pp 153–165Google Scholar
  20. McAdoo BG, Pratson LF, Orange DL (2000) Submarine landslide geomorphology, US continental slope. Mar Geol 169:103–136CrossRefGoogle Scholar
  21. Preu BM, Schwenk T, Hernández-Molina J et al (2012) Sedimentary growth pattern on the northern Argentine slope: the impact of North Atlantic Deep Water on southern hemisphere slope architecture. Mar Geol 329–331:113–125CrossRefGoogle Scholar
  22. Sarnthein M, Koopmann B (1980) Late Quaternary deep-sea record on northwest African dust supply and wind circulation. Palaeoecol Afr 12:239–253Google Scholar
  23. Tappin DR, Watts P, McMurtry GM et al (2001) The Sissano, Papua New Guinea tsunami of July 1998 – offshore evidence on the source mechanism. Mar Geol 175:1–23CrossRefGoogle Scholar
  24. Weaver PPE, Wynn RB, Kenyon NH et al (2000) Continental margin sedimentation with special reference to the Northeast Atlantic margin. Sedimentology 47:239–256CrossRefGoogle Scholar
  25. Wynn RB, Masson DG, Stow DAV et al (2000) The Northwest African slope apron: a modern analogue for deep-water systems with complex seafloor topography. Mar Petrol Geol 17:253–265CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • S. Krastel
    • 1
    Email author
  • J. Lehr
    • 1
  • D. Winkelmann
    • 2
  • T. Schwenk
    • 3
  • B. Preu
    • 3
  • M. Strasser
    • 4
  • R. B. Wynn
    • 5
  • A. Georgiopoulou
    • 6
  • T. J. J. Hanebuth
    • 3
  1. 1.Institute for GeosciencesChristian-Albrechts-Universität zu KielKielGermany
  2. 2.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  3. 3.MARUM – Center for Marine Environmental Sciences, and Faculty of GeosciencesUniversity of BremenBremenGermany
  4. 4.Geological InstituteETH ZurichZurichSwitzerland
  5. 5.National Oceanography CentreSouthamptonUK
  6. 6.University College DublinDublinIreland

Personalised recommendations