Evidence for Mass Transport Deposits at the IODP JFAST-Site in the Japan Trench

  • Hiske G. Fink
  • Michael Strasser
  • Miriam Römer
  • Martin Kölling
  • Ken Ikehara
  • Toshiya Kanamatsu
  • Dominik Dinten
  • Arata Kioka
  • Toshiya Fujiwara
  • Kiichiro Kawamura
  • Shuichi Kodaira
  • Gerold Wefer
Chapter

Abstract

Several studies indicate that the 2011 Tohoku-Oki earthquake (Mw 9.0) off the Pacific coast of Japan has induced slip to the trench and triggered landslides in the Japan Trench. In order to better understand these processes, detailed mapping and shallow-coring landslides at the trench as well as Integrated Ocean Drilling Program (IODP) deep drilling to recover the plate boundary décollement (Japan Trench Fast Earthquake Drilling Project, JFAST) have been conducted. In this study we report sediment core data from the rapid response R/V SONNE cruise (SO219A) to the Japan Trench, evidencing a Mass Transport Deposit (MTD) in the uppermost section later drilled at this JFAST-site during IODP Expedition 343. A 8.7 m long gravity core (GeoB16423-1) recovered from ∼7,000 m water depth reveals a 8 m sequence of semi-consolidated mud clast breccias embedded in a distorted chaotic sediment matrix. The MTD is covered by a thin veneer of 50 cm hemipelagic, bioturbated diatomaceous mud. This stratigraphic boundary can be clearly distinguished by using physical properties data from Multi Sensor Core Logging and from fall-cone penetrometer shear strength measurements. The geochemical analysis of the pore-water shows undisturbed linear profiles measured from the seafloor downcore across the stratigraphic contact between overlying younger background-sediment and MTD below. This indicates that the investigated section has not been affected by a recent sediment destabilization in the course of the giant Tohoku-Oki earthquake event. Instead, we report an older landslide which occurred between 700 and 10,000 years ago, implying that submarine mass movements are dominant processes along the Japan Trench. However, they occur on local sites and not during each megathrust earthquake.

Keywords

Japan Trench Tohoku-Oki earthquake IODP-JFAST Mass-transport deposit Physical properties Geochemistry 

References

  1. Antoine D, André J-M, Morel A (1996) Oceanic primary production: 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll. Global Biogeochem Cycles 10(1):57–69. doi:10.1029/95gb02832 CrossRefGoogle Scholar
  2. Blum P (1997) Physical properties handbook: a guide to the shipboard measurement of physical properties of deep-sea cores. Ocean drilling program technical note 26. doi:10.2973/odp.tn.26.1997
  3. Chester FM, Mori JJ, Toczko S, Eguchi N, The Expedition 343/343T Scientists (2012) Japan Trench Fast Drilling Project (JFAST). Integrated ocean drilling program preliminary report 343/343T. doi:10.2204/iodp.pr.343343T.2012
  4. DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181(1):1–80. doi:10.1111/j.1365-246X.2009.04491.x CrossRefGoogle Scholar
  5. Fine IV, Rabinovich AB, Bornhold BD, Thomson RE, Kulikov EA (2005) The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar Geol 215(1–2):45–57. doi:10.1016/j.margeo.2004.11.007 CrossRefGoogle Scholar
  6. Fujii Y, Satake K, Si S, Shinohara M, Kanazawa T (2011) Tsunami source of the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63(7):815–820CrossRefGoogle Scholar
  7. Fujiwara T, Kodaira S, No T, Kaiho Y, Takahashi N, Kaneda Y (2011) The 2011 Tohoku-Oki earthquake: displacement reaching the trench axis. Science 334(6060):1240. doi:10.1126/science.1211554 CrossRefGoogle Scholar
  8. Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34(1):33–59. doi:10.1029/95rg03287 CrossRefGoogle Scholar
  9. Heezen BC, Ewing WM (1952) Turbidity currents and submarine slumps, and the 1929 Grand Banks [Newfoundland] earthquake. Am J Sci 250(12):849–873. doi:10.2475/ajs.250.12.849 CrossRefGoogle Scholar
  10. Henkel S, Schwenk T, Hanebuth TJ, Strasser M, Riedinger N, Formolo M, Tomasini J, Krastel S, Kasten S (2012) Pore water geochemistry as a tool for identifying and dating recent mass-transport deposits. In: Yamada Y et al (eds) Submarine mass movements and their consequences, vol 31, Advances in natural and technological hazards research. Springer, Dordrecht, pp 87–97. doi:10.1007/978-94-007-2162-3_8 CrossRefGoogle Scholar
  11. Ikehara K (2012) Offshore earthquake- and/or tsunami-induced sediment transports and their deposits: Importance of marine sediment study for understanding past earthquakes and tsunami. J Sedimentol Soc Jpn 71(2):141–147CrossRefGoogle Scholar
  12. Kawamura K, Sasaki T, Kanamatsu T, Sakaguchi A, Ogawa Y (2012) Large submarine landslides in the Japan Trench: a new scenario for additional tsunami generation. Geophys Res Lett 39(5):L05308. doi:10.1029/2011gl050661 CrossRefGoogle Scholar
  13. Kodaira S, No T, Nakamura Y, Fujiwara T, Kaiho Y, Miura S, Takahashi N, Kaneda Y, Taira A (2012) Coseismic fault rupture at the trench axis during the 2011 Tohoku-oki earthquake. Nat Geosci 5(9):646–650CrossRefGoogle Scholar
  14. Mori N, Takahashi T, Yasuda T, Yanagisawa H (2011) Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophys Res Lett 38:L00G14. doi:10.1029/2011gl049210 CrossRefGoogle Scholar
  15. Party S (1980) Initial reports of the deep sea drilling project 56/57. U.S. Government Printing Office, Washington, DCCrossRefGoogle Scholar
  16. Schulz HD (2006) Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin/Heidelberg, pp 73–124CrossRefGoogle Scholar
  17. Seeberg-Elverfeldt J, Schlüter M, Feseker T, Kölling M (2005) Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol Oceanogr Methods 3:361–371CrossRefGoogle Scholar
  18. Strasser M, Kölling M, dos Santos Ferreira C, Fink HG, Fujiwara T, Henkel S, Ikehara K, Kanamatsu T, Kawamura K, Kodaira S, Römer M, Wefer G, The R/V Sonne Cruise SO219A and JAMSTEC Cruise MR12-E01 scientists (2013) A slump in the trench: tracking the impact of the 2011 Tohoku-Oki earthquake. Geology 41(8):935–938. doi:10.1130/g34477.1 Google Scholar
  19. Suess E, Balzer W, Hesse KF, Müller PJ, Ungerer CA, Wefer G (1982) Calcium carbonate hexahydrate from organic-rich sediments of the Antarctic shelf: precursors of glendonites. Science 216(4550):1128–1131. doi:10.1126/science.216.4550.1128 CrossRefGoogle Scholar
  20. Suyehiro K, Sacks IS, Acton GD, Oda M (2003) Proceedings of the ODP, scientific results, vol 186, College Station, TX (Ocean Drilling Program). doi: 102973/odpprocsr1862003Google Scholar
  21. Taira A, Ogawa Y (1991) Cretaceous to Holocene forearc evolution in Japan and its implication to crustal dynamics. Episodes 14(3):205–212Google Scholar
  22. Tajima F, Mori J, Kennett BLN (2013) A review of the 2011 Tohoku-Oki earthquake (Mw 9.0): large-scale rupture across heterogeneous plate coupling. Tectonophysics 586:15–34CrossRefGoogle Scholar
  23. Tsuru T, Park J-O, Miura S, Kodaira S, Kido Y, Hayashi T (2002) Along-arc structural variation of the plate boundary at the Japan Trench margin: implication of interplate coupling. J Geophys Res 107(B12):2357. doi:10.1029/2001jb001664 CrossRefGoogle Scholar
  24. Völker D, Scholz F, Geersen J (2011) Analysis of submarine landsliding in the rupture area of the 27 February 2010 Maule earthquake, Central Chile. Mar Geol 288(1–4):79–89CrossRefGoogle Scholar
  25. von Huene R, Lallemand S (1990) Tectonic erosion along the Japan and Peru convergent margins. Geol Soc Am Bull 102(6):704–720. doi:10.1130/0016-7606(1990)102<0704:teatja>2.3.co;2 CrossRefGoogle Scholar
  26. Wood DM (1985) Some fall-cone tests. Géotechnique 38:64–68CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hiske G. Fink
    • 1
  • Michael Strasser
    • 2
  • Miriam Römer
    • 1
  • Martin Kölling
    • 1
  • Ken Ikehara
    • 3
  • Toshiya Kanamatsu
    • 4
  • Dominik Dinten
    • 2
  • Arata Kioka
    • 5
  • Toshiya Fujiwara
    • 4
  • Kiichiro Kawamura
    • 6
  • Shuichi Kodaira
    • 4
  • Gerold Wefer
    • 1
  1. 1.MARUM – Center for Marine Environmental SciencesUniversity of BremenBremenGermany
  2. 2.Geological InstituteETH ZurichZurichSwitzerland
  3. 3.AIST, Geological Survey JapanIbarakiJapan
  4. 4.IFREE, JAMSTECYokosukaJapan
  5. 5.AORITokyo UniversityTokyoJapan
  6. 6.Departement of Geosphere ScienceYamaguchi UniversityYamaguchiJapan

Personalised recommendations