Size-Frequency Relationship of Submarine Landslides at Convergent Plate Margins: Implications for Hazard and Risk Assessment

  • Jan H. BehrmannEmail author
  • David Völker
  • Jacob Geersen
  • Rieka Harders
  • Wilhelm Weinrebe
Part of the Advances in Natural and Technological Hazards Research book series (NTHR, volume 37)


We use complete inventories of submarine landslides from the Middle America (MA) and the Central Chile (CC) trench and forearc systems to analyze the size-frequency relationship of such structures on active continental slopes. The MA forearc is characterized by subduction erosion, and the CC forearc has had an accretionary tectonic history since the Late Neogene. Both are end-member types of convergent margins around the world. Both margin segments have been mapped by high-resolution swath bathymetry at strike lengths of about 1,300 km (MA) and 1,000 km (CC). The Middle America forearc has 143 discernible slides with sizes ranging from 0.38 to 1,426 km2. Offshore Central Chile, the 62 mapped slides are 0.9–1,285 km2 in size. Slide localization is markedly different at both margin types. While they also vary strongly along strike of the individual margin, depending on forearc slope gradient, kinematic coupling between plates, or topographic structure of the downgoing plate, the size-frequency relationships are remarkably similar. This allows quantification of the incidence of a submarine slide of given size per margin segment. The relationships hold for slide sizes from 10 to 1,000 km2, with the cut-off defined by slide size (smaller slides) and sample size (larger slides). As slide traces of 100–300 km2 size are obliterated by tectonic deformation after about 200,000 years, recurrence rates for slides of a given size can be estimated. This offers a chance to assess hazard and risk resulting from such events. It is suggested that it takes 20 to 200 plate boundary earthquakes to set off a medium-sized (>10 km2) or larger slump or slide.


Convergent plate boundary Tectonics Erosion Accretion Submarine landslide Chile Central America 



We are grateful for the reviews of this manuscript by Yuzuru Yamamoto and Achim Kopf, which helped to improve the original manuscript.


  1. Anasetti A, Krastel S, Weinrebe W et al (2010) Detailed analysis of the Valdes Slide: a landward facing slope failure off Chile. Abstract EGU2010-13497, 2010 General Assembly of the EGU, Vienna, 2–7 May 2010Google Scholar
  2. Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171:329–334. doi: 10.1016/S0012-821X(99)00173-9 CrossRefGoogle Scholar
  3. Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics 16:489–503. doi: 10.1029/97TC00494 CrossRefGoogle Scholar
  4. Barckhausen U, Ranero CR, von Huene R et al (2001) Revised tectonic boundaries in the Cocos Plate off Costa Rica: implications for the segmentation of the convergent margin and for plate tectonic models. J Geophys Res 106:19207–19220CrossRefGoogle Scholar
  5. Behrmann JH, Lewis SD, Cande S et al (1994) Tectonics and geology of spreading ridge subduction at the Chile Triple Junction; a synthesis of results from Leg 141 of the Ocean Drilling Program. Geol Rundsch 83:832–852CrossRefGoogle Scholar
  6. Contreras-Reyes E, Flueh ER, Grevemeyer I (2010) Tectonic control on sediment accretion and subduction off south central Chile: Implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes. Tectonics 29:TC6018. doi: 10.1029/2010TC002734 CrossRefGoogle Scholar
  7. Davis D, Suppe J, Dahlen FA (1983) Mechanics of fold-and-thrust belts and accretionary wedges. J Geophys Res 88(B2):1153–1172CrossRefGoogle Scholar
  8. DeMets C (2001) A new estimate for present-day Cocos-Caribbean plate motion: implications for slip along the Central America volcanic arc. Geophys Res Lett 28:4043–4046CrossRefGoogle Scholar
  9. Geersen J, Behrmann JH, Völker D et al (2011a) Active tectonics of the South Chilean marine fore arc (35° S–40° S). Tectonics 30:TC3006CrossRefGoogle Scholar
  10. Geersen J, Voelker D, Behrmann JH et al (2011b) Pleistocene giant slope failures offshore Arauco Peninsula, Southern Chile. J Geol Soc 168:1237–1248CrossRefGoogle Scholar
  11. Harders R, Kutterolf S, Hensen C et al (2010) Tephra layers: a controlling factor on submarine translational sliding? Geochem Geophys Geosyst 12:Q05S23. doi: 10.1029/2009GC002844 Google Scholar
  12. Harders R, Ranero CR, Weinrebe W et al (2011) Submarine slope failures along the convergent continental margin of the Middle America Trench. Geochem Geophys Geosyst 12:Q05S32. doi: 10.1029/2010GC003401 CrossRefGoogle Scholar
  13. Harders R, Ranero CR, Weinrebe W et al (2012) An overview of the role of long-term tectonics and incoming plate structure on segmentation of submarine mass wasting phenomena along the Middle America Trench. In: Yamada Y, Kawamura K, Ikehara K (eds) Submarine mass movements and their consequences. Springer, Dordrecht/Heidelberg/London/New York, pp 391–402. doi: 10.1007/978-94-007-2162-1 CrossRefGoogle Scholar
  14. Kimura G, Silver E, Blum P et al (1997) Proceedings of the ocean drilling program, Initial reports, 170. Ocean Drilling Program, College Station, 458 ppGoogle Scholar
  15. Kukowski N, Oncken O (2006) Subduction erosion – the “normal” mode of fore-arc material transfer along the Chilean Margin? In: Oncken O, Chong G, Franz G et al (eds) The Andes – active subduction orogeny. Springer, Berlin, pp 217–236Google Scholar
  16. Lee HJ (2008) Timing of occurrence of large submarine landslides on the Atlantic ocean margin. Mar Geol. doi: 10.1016/j.margeo.2008.09.009 Google Scholar
  17. Mulder T, Cochonat P (1996) Classification of offshore mass movements. J Sediment Res 66:43–57Google Scholar
  18. Rundle JB (1989) Derivation of the complete Gutenberg-Richter magnitude-frequency relation using the principle of scale invariance. J Geophys Res 94:12337–12342CrossRefGoogle Scholar
  19. Summerhayes C, Borold B, Embley R (1979) Surficial slides and slumps on the continental slope and rise of South West Africa: a reconnaissance study. Mar Geol 31:265–277CrossRefGoogle Scholar
  20. Tebbens SF, Cande SC (1997) Southeast Pacific tectonic evolution from early Oligocene to present. J Geophys Res 102:12061–12084. doi: 10.1029/96jb02582 CrossRefGoogle Scholar
  21. Tripsanas EK, Bryant WR, Doyle EH (2004) Slope-instability processes caused by salt movements in a complex deep-water environment, Bryant Canyon area, northwest Gulf of Mexico. AAPG Bull 88:801–823CrossRefGoogle Scholar
  22. Völker D, Wiedicke M, Ladage S et al (2006) Latitudinal variation in sedimentary processes in the Peru-Chile Trench off Central Chile. In: Oncken O, Chong G, Franz G et al (eds) The Andes – active subduction orogeny. Springer, Berlin, pp 193–216Google Scholar
  23. Völker D, Weinrebe W, Behrmann JH et al (2009) Mass wasting at the base of the south central Chilean continental margin: the Reloca Slide. Adv Geosci 22:155–167CrossRefGoogle Scholar
  24. Völker D, Geersen J, Behrmann JH et al (2012) Submarine mass wasting off Southern Central Chile: distribution and possible mechanisms of slope failure at an active continental margin. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences. Springer, Dordrecht/Heidelberg/London/New York, pp 379–389. doi: 10.1007/978-94-007-2162-3_34 CrossRefGoogle Scholar
  25. von Huene R, Ranero CR, Weinrebe W (2000) Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism. Tectonics 19:314–334CrossRefGoogle Scholar
  26. von Huene R, Ranero CR, Watts P (2004) Tsunamigenic slope failure along the Middle America Trench in two tectonic settings. Mar Geol 203:303–317. doi: 10.1016/S0025-3227(03)00312-8 CrossRefGoogle Scholar
  27. Werner R, Hoernle K, van den Bogaard P et al (1999) Drowned 14 m.y. old Galapagos archipelago off the coast of Costa Rica: Implications for tectonic evolutionary models. Geology 27:499–502CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jan H. Behrmann
    • 1
    Email author
  • David Völker
    • 1
  • Jacob Geersen
    • 2
  • Rieka Harders
    • 1
  • Wilhelm Weinrebe
    • 1
  1. 1.GEOMAR, Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK

Personalised recommendations