On the Use of Programmed Automata for a Verification of ECG Diagnoses

  • Mariusz FlasińskiEmail author
  • Piotr Flasiński
  • Ewa Konduracka
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 226)


The recent results into constructing a formal model of a syntactic pattern recognition-based System for Teaching ElectroCardioGraphy (STECG) are presented. A class of programmed attributed regular grammars (PARG) is defined as a formal tool for a generation of ECG patterns. A programmed attributed finite-state automaton (PAFSA) is introduced for an analysis of ECG patterns. PAFSA is a basic formalism for a development of the STECG system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barro, S., Fernandez-Delgado, M., Villa-Sobrino, J.A., Regueiro, C.V., Sanchez, E.: Classifying multichannel ECG patterns with an adaptive neural network. IEEE Eng. Med. Biol. Mag. 17, 45–55 (1998)CrossRefGoogle Scholar
  2. 2.
    Belferte, G., De Mori, R., Ferraris, F.: A contribution to the automatic processing of electrocardiograms using syntactic methods. IEEE Trans. Biomed. Eng. 26, 125–136 (1979)CrossRefGoogle Scholar
  3. 3.
    Bunke, H.O.: Graph grammars as a generative tool in image understanding. In: Ehrig, H., Nagl, M., Rozenberg, G. (eds.) Graph Grammars 1982. LNCS, vol. 153, pp. 8–19. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  4. 4.
    Bunke, H.O., Sanfeliu, A. (eds.): Syntactic and Structural Pattern Recognition - Theory and Applications. World Scientific, Singapore (1990)zbMATHGoogle Scholar
  5. 5.
    Dong, J., Xu, S., Zhan, C.: ECG recognition and classification: approaches, problems and new method. J. Biomed. Eng. 24, 1224–1229 (2007)Google Scholar
  6. 6.
    Engin, M.: ECG beat classification using neuro-fuzzy network. Patt. Rec. Lett. 25, 1715–1722 (2004)CrossRefGoogle Scholar
  7. 7.
    Flasiński, M., Jurek, J.: Dynamically programmed automata for quasi context sensitive languages as a tool for inference support in pattern recognition-based real-time control expert systems. Pattern Recognition 32, 671–690 (1999)CrossRefGoogle Scholar
  8. 8.
    Flasiński, M., Reroń, E.z., Jurek, J., Wójtowicz, P., Atłasiewicz, K.: Mathematical linguistics model for medical diagnostics of organ of hearing in neonates. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS (LNAI), vol. 3019, pp. 746–753. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Flasiński, M., Jurek, J.: On the analysis of fuzzy string patterns with the help of extended and stochastic GDPLL(k) grammars. Fundamenta Informaticae 71, 1–14 (2006)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Fu, K.S.: Syntactic Pattern Recognition and Applications. Prentice Hall, Englewood Cliffs (1982)zbMATHGoogle Scholar
  11. 11.
    Gonzales, R.C., Thomason, M.G.: Syntactic Pattern Recognition: An Introduction. Addison-Wesley, Reading (1978)Google Scholar
  12. 12.
    Horowitz, S.L.: A syntactic algorithm for peak detection in waveforms with applications to cardiography. Comm. ACM 18, 281–285 (1975)zbMATHCrossRefGoogle Scholar
  13. 13.
    Koski, A., Juhola, M., Meriste, M.: Syntactic recognition of ECG signals by attributed finite automata. Pattern Recognition 28, 1927–1940 (1995)CrossRefGoogle Scholar
  14. 14.
    Maglaveras, N., Stamkopoulos, T., Diamantaras, K., Pappas, C., Strintzis, M.: ECG pattern recognition and classification using non-linear transforms and neural networks: a review. Int. J. Med. Inform. 52, 191–208 (1998)CrossRefGoogle Scholar
  15. 15.
    Martis, R.J., Chakraborty, C., Ray, A.K.: A two-stage mechanism for registration and classification of ECG using Gaussian mixture model. Pattern Recognition 42, 2979–2988 (2009)zbMATHCrossRefGoogle Scholar
  16. 16.
    Noponen, K., Kortelainen, J., Seppanen, T.: Invariant trajectory classification of dynamical systems with a case study on ECG. Pattern Recognition 42, 1832–1844 (2009)zbMATHCrossRefGoogle Scholar
  17. 17.
    Osowski, S., Linh, T.H.: ECG beat recognition using fuzzy hybrid neural network. IEEE Trans. Biomed. Eng. 48, 1265–1271 (2001)CrossRefGoogle Scholar
  18. 18.
    Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32, 230–236 (1985)CrossRefGoogle Scholar
  19. 19.
    Pavlidis, T.: Structural Pattern Recognition. Springer, New York (1977)zbMATHGoogle Scholar
  20. 20.
    Papakonstantinou, G., Skordalakis, E., Gritzali, F.: An attribute grammar for QRS detection. Pattern Recognition 19, 297–303 (1986)CrossRefGoogle Scholar
  21. 21.
    Piętka, E.: Feature extraction in computerized approach to the ECG analysis. Pattern Recognition 24, 139–146 (1991)CrossRefGoogle Scholar
  22. 22.
    Rosenkrantz, D.J.: Programmed grammars and classes of formal languages. Journal of the Association for Computing Machinery 16, 107–131 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Skordalakis, E.: Syntactic ECG processing: a review. Pattern Recognition 19, 305–313 (1986)CrossRefGoogle Scholar
  24. 24.
    Stallmann, F.W., Pipberger, H.V.: Automatic recognition of electrocardiographic waves by digital computer. Circ. Res. 9, 1138–1143 (1961)CrossRefGoogle Scholar
  25. 25.
    Sternickel, K.: Automatic pattern recognition in ECG time series. Comp. Meth. Programs in Biomedicine 68, 109–115 (2002)CrossRefGoogle Scholar
  26. 26.
    Tadeusiewicz, R., Ogiela, M.R.: Medical Image Understanding Technology. Springer, Heidelberg (2004)zbMATHCrossRefGoogle Scholar
  27. 27.
    Trahanias, P., Skordalakis, E.: Syntactic pattern recognition of the ECG. IEEE Trans. Patt. Analysis Mach. Intell. 12, 648–657 (1990)CrossRefGoogle Scholar
  28. 28.
    Tumer, M.B., Belfore, L.A., Ropella, K.M.: A syntactic methodology for automatic diagnosis by analysis of continuous time measurements using hierarchical signal representations. IEEE Trans. on Syst. Man Cybern. 33, 951–965 (2003)CrossRefGoogle Scholar
  29. 29.
    Udupa, J., Murthy, I.S.N.: Syntactic approach to ECG rhythm analysis. IEEE Trans. Biomed. Eng. 27, 370–375 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Mariusz Flasiński
    • 1
    Email author
  • Piotr Flasiński
    • 2
  • Ewa Konduracka
    • 3
  1. 1.IT Systems DepartmentJagiellonian UniversityCracowPoland
  2. 2.Ernst & YoungWarsawPoland
  3. 3.Institute of Cardiology, Collegium MedicumJagiellonian UniversityCracowPoland

Personalised recommendations