Advertisement

Altair: Automatic Image Analyzer to Assess Retinal Vessel Caliber

  • Gabino VerdeEmail author
  • Luis García-Ortiz
  • Sara Rodríguez
  • José I. Recio-Rodríguez
  • Juan F. De Paz
  • Manuel A. Gómez-Marcos
  • Miguel A. Merchán
  • Juan M. Corchado
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 226)

Abstract

The scope of this work is to develop a technological platform specialized in assessing retinal vessel caliber and describing the relationship of the results obtained to cardiovascular risk. Population studies conducted have found retinal vessel caliber to be related to the risk of hypertension, left ventricular hypertrophy, metabolic syndrome, stroke, and coronary artery disease. The vascular system in the human retina has a unique property: it is easily observed in its natural living state in the human retina by the use of a retinal camera. Retinal circulation is an area of active research by numerous groups, and there is general experimental agreement on the analysis of the patterns of the retinal blood vessels in the normal human retina. The development of automated tools designed to improve performance and decrease interobserver variability, therefore, appears necessary.

Keywords

Retinal Image Human Retina Automatic Image Analyzer Retinal Blood Vessel Retinal Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akita, K., Kuga, H.: A computer method of understanding ocular fundus images. Pattern Recogn. 16, 431–443 (1982)CrossRefGoogle Scholar
  2. 2.
    Chen, B., Tosha, C., Gorin, M.B., Nusinowitz, S.: Analysis of Autofluorescent retinal images and measurement of atrophic lesion growth in Stargardt disease. Experimental Eye Research 91(2), 143–152 (2010)CrossRefGoogle Scholar
  3. 3.
    Goldbaum, M., Katz, N., Nelson, M., Haff, L.: The discrimination of similarly colored objects in computer images of the ocular fundus. Invest. Ophthalmol. Vis. Sci. 31, 617–623 (1990)Google Scholar
  4. 4.
    Heneghan, C., Flynn, J., O’Keefe, M., Cahill, M.: Characterization of changes in blood vessel and tortuosity in retinopathy of prematurity using image analysis. Med. Image Anal. 6, 407–429 (2002)CrossRefGoogle Scholar
  5. 5.
    Heras, E., De la Prieta, F., Julian, V., Rodríguez, S., Botti, V., Bajo, J., Corchado, J.M.: Agreetment technologies and their use in cloud computing environments. Progress in Artificial Intelligence 1(4) (2012)Google Scholar
  6. 6.
    Hoover, A., Goldbaum, M.: Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Biomed. Eng. 22, 951–958 (2003)Google Scholar
  7. 7.
    Kalviainen, H., Hirvonen, P., Xu, L., Oja, E.: Probabilistic and non-probabilistic Hough transforms. Image Vision Comput. 13, 239–252 (1995)CrossRefGoogle Scholar
  8. 8.
    Lee, S., Wang, Y., Lee, E.: A computer algorithm for automated detection and quantification of microaneurysms and haemorrhages in color retinal images. In: SPIE Conference on Image Perception and Performance, vol. 3663, pp. 61–71 (1999)Google Scholar
  9. 9.
    Li, H., Chutatape, O.: Automated feature extraction in color retinal images by a model based approach. IEEE Trans. Biomed. Eng. 51, 246–254 (2004)CrossRefGoogle Scholar
  10. 10.
    Patton, N., Aslam, T.M., MacGillivray, T., Deary, I.J., Dhillon, B., Eikelboom, R.H., Yogesan, K., Constable, I.J.: Retinal image analysis: Concepts, applications and potential. Progress in Retinal and Eye Research 25(1), 99–127 (2006)CrossRefGoogle Scholar
  11. 11.
    Rodríguez, S., De Paz, J.F., Bajo, J., Corchado, J.M.: Applying CBR Sytems to Micro-Array Data Classification. In: Corchado, J.M., De Paz, J.F., Rocha, M.P., Riverola, F.F. (eds.) Proceedings of IWPACBB 2008. ASC, pp. 102–111. Springer, Heidelberg (2010)Google Scholar
  12. 12.
    Sánchez, C., Hornero, R., López, M.I., Aboy, M., Poza, J., Abásolo, D.: A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis. Medical Engineering and Physics 30(1-3), 350–357 (2008)CrossRefGoogle Scholar
  13. 13.
    Tamura, S., Okamoto, Y., Yanashima, K.: Zero-crossing interval correction in tracing eye-fundus blood vessels. Pattern Recogn. 21, 227–233 (1988)CrossRefGoogle Scholar
  14. 14.
    Tanabe, Y., Kawasaki, R., Wang, J.J., Wong, T.Y., Mitchell, P., Daimon, M., et al.: Retinal arteriolar narrowing predicts 5-year risk of hypertension in Japanese people: the Funagata study. Microcirculation 17, 94–102 (2010)CrossRefGoogle Scholar
  15. 15.
    Wong, T.Y., Duncan, B.B., Golden, S.H., Klein, R., Couper, D.J., Klein, B.E., et al.: Associations between the metabolic syndrome and retinal microvascular signs: the Atherosclerosis Risk In Communities study. Invest Ophthalmol. Vis. Sci. 45, 2949–2954 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Gabino Verde
    • 1
    Email author
  • Luis García-Ortiz
    • 2
  • Sara Rodríguez
    • 1
  • José I. Recio-Rodríguez
    • 2
  • Juan F. De Paz
    • 1
  • Manuel A. Gómez-Marcos
    • 2
  • Miguel A. Merchán
    • 2
  • Juan M. Corchado
    • 1
  1. 1.Computers and Automation DepartmentUniversity of SalamancaSalamancaSpain
  2. 2.Sacyl. IBSALPrimary care Research unit La AlamedillaSalamancaSpain

Personalised recommendations