Advertisement

Extraction of the Foreground Regions by Means of the Adaptive Background Modelling Based on Various Colour Components for a Visual Surveillance System

  • Dariusz FrejlichowskiEmail author
  • Katarzyna Gościewska
  • Paweł Forczmański
  • Adam Nowosielski
  • Radosław Hofman
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 226)

Abstract

Intelligent monitoring systems based on visual content analysis are often composed of three main modules — background modelling, object extraction and object tracking. This paper describes a method for adaptive background modelling utilizing Gaussian Mixture Models (GMM) and various colour components. The description is based on the experimental results obtained during the development of the SmartMonitor — an innovative security system based on video content analysis. In this paper the main characteristics of the system are introduced. An explanation of GMM algorithm and a presentation of its main advantages and drawbacks is provided. Finally, some experimentally obtained images containing foreground regions extracted with the use of various background models are presented.

Keywords

Gaussian Mixture Model False Detection Colour Component Foreground Region Foreground Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Forczmański, P., Seweryn, M.: Surveillance Video Stream Analysis Using Adaptive Background Model and Object Recognition. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 114–121. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Forczmański, P., Frejlichowski, D., Nowosielski, A., Hofman, R.: Current trends in developing of intelligent visual monitoring systems. Methods of Applied Computer Science (29), 19–32 (2011) (in Polish)Google Scholar
  3. 3.
    Frejlichowski, D.: Automatic localisation of moving vehicles in image sequences using morphological operations. In: Proceedings of the 1st IEEE International Conference on Information Technology, Gdansk, pp. 439–442 (2008)Google Scholar
  4. 4.
    Frejlichowski, D., Forczmański, P., Nowosielski, A., Gościewska, K., Hofman, R.: SmartMonitor: An Approach to Simple, Intelligent and Affordable Visual Surveillance System. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 726–734. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Frejlichowski, D., Gościewska, K., Forczmański, P., Nowosielski, A., Hofman, R.: SmartMonitor: recent progress in the development of an innovative visual surveillance system. Journal of Theoretical and Applied Computer Science 6(3), 28–35 (2012)Google Scholar
  6. 6.
    Gurwicz, Y., Yehezkel, R., Lachover, B.: Multiclass object classification for realtime video surveillance systems. Pattern Recogn. Lett. 32, 805–815 (2011)CrossRefGoogle Scholar
  7. 7.
    Javed, O., Shafique, K., Shah, M.: A Hierarchical Approach to Robust Background Subtraction Using Color and Gradient Information. In: Workshop on Motion and Video Computing, pp. 22–27 (2002)Google Scholar
  8. 8.
    Kaewtrakulpong, P., Bowden, R.: An Improved Adaptive Background Mixture Model for Real-Time Tracking with Shadow Detection. In: Proceeding of the 2nd European Workshop on Advanced Video Based Surveillance Systems, Computer Vision and Distributed Processing, pp. 1–5. Kluwer Academic Publisher (2001)Google Scholar
  9. 9.
    Piccardi, M.: Background Subtraction Techniques: A Review. IEEE International Conference on Systems, Man and Cybernetics 4, 3099–3104 (2005)Google Scholar
  10. 10.
    Robertson, N., Reid, I.: A general method for human activity recognition in video. Comput. Vis. Image Und. 104, 232–248 (2006)CrossRefGoogle Scholar
  11. 11.
    Sen-Ching, S.C.S., Kamath, C.: Robust Techniques for Background Subtraction in Urban Traffic Video. In: Bhaskaran V, Panchanathan S (eds) Visual Communications and Image Processing, vol. 5308, pp. 881–892 (2004)Google Scholar
  12. 12.
    Stauffer, C., Grimson, W.E.L.: Adaptive Background Mixture Models for Real-Time Tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 246–252 (1999)Google Scholar
  13. 13.
    Wang, W., Chen, D., Gao, W., Yang, J.: Modeling Background from Compressed Video. IEEE Transactions on Circuits and Systems for Video Technology (5), 670–681 (2008)CrossRefGoogle Scholar
  14. 14.
    Zivkovic, Z.: Improved Adaptive Gaussian Mixture Model for Background Subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 2, pp. 28–31 (2004)Google Scholar
  15. 15.
    Bosch IVA 4.0 Commercial Brochure, http://resource.boschsecurity.com/

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Dariusz Frejlichowski
    • 1
    Email author
  • Katarzyna Gościewska
    • 1
    • 2
  • Paweł Forczmański
    • 1
  • Adam Nowosielski
    • 1
  • Radosław Hofman
    • 2
  1. 1.Faculty of Computer Science and Information TechnologyWest Pomeranian University of Technology, SzczecinSzczecinPoland
  2. 2.Smart Monitor, sp. z o. o.SzczecinPoland

Personalised recommendations