Advertisement

Eigenfaces, Fisherfaces, Laplacianfaces, Marginfaces – How to Face the Face Verification Task

  • Maciej SmiataczEmail author
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 226)

Abstract

This paper describes the exhaustive tests of four known methods of linear transformations (Eigenfaces, Fisherfaces, Laplacianfaces and Marginfaces) in the context of face verification task. Additionally, we introduce a new variant of the transformation (Laplacianface + LDA), and the specific interval-based decision rule. Both of them improve the performance of face verification, in general, however, our experiments show that the linear transformations are of marginal importance in this field.

Keywords

Decision Rule Face Recognition Linear Transformation Linear Discriminant Analysis Biometric System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)CrossRefGoogle Scholar
  2. 2.
    He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.-J.: Face Recognition Using Laplacianfaces. IEEE Trans. Pattern Analysis and Machine Intelligence 27(3), 328–340 (2005)CrossRefGoogle Scholar
  3. 3.
    Phillips, P.J., Moon, H., Rauss, P.J., Rizvi, S.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  4. 4.
    Sammon, J.W.: An Optimal Discriminant Plane. IEEE Trans. Computers C-19(9), 826–829 (1970)CrossRefGoogle Scholar
  5. 5.
    SART-2 project (2012), http://sart2.eti.pg.gda.pl/
  6. 6.
    Sim, T., Baker, S., Bsat, M.: The CMU Pose, Illumination, and Expression (PIE) Database. In: Proc. 5th Int. Conf. on Automatic Face and Gesture Recognition (2002)Google Scholar
  7. 7.
    Smiatacz, M., Przybycien, K.: A Framework for Training and Testing of Complex Pattern Recognition Systems. In: IEEE Conf. on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur, pp. 198–203 (2011)Google Scholar
  8. 8.
    Turk, M., Pentland, A.: Eigenfaces for Recognition. J. Cognitive Neuroscience 3(1), 71–86 (1990)CrossRefGoogle Scholar
  9. 9.
    Viola, P., Jones, M.J.: Robust Real-Time Face Detection. Int. J. Comp. Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  10. 10.
    Wang, F., Wang, X., Zhang, D., Zhang, C., Li, T.: marginFace: A novel face recognition method by average neighborhood margin maximization. Pattern Recognition 42, 2863–2875 (2009)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Faculty of Electronics, Telecommunications and InformaticsGdansk University of TechnologyGdanskPoland

Personalised recommendations