K-Induction Based Verification of Real-Time Safety Critical Systems

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 224)


Nowadays, safety critical systems are often complex, real-time systems requiring formal methods to prove the correctness of their behavior. This work presents a framework that supports modeling and model checking such systems. We adapted an existing formalism to provide better modeling and model checking support. Using this formalism, we extended a k-induction based model checking approach: we defined a procedure to handle both safety and liveness properties, and developed methods to find invariants. We implemented a toolchain for this workflow and evaluated our methods in an industrial case study.


Model Check Linear Temporal Logic Liveness Property Eclipse Modeling Framework Model Check Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös, A.: Incremental Evaluation of Model Queries over EMF Models. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 76–90. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, p. 193. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Biere, A., Artho, C., Schuppan, V.: Liveness Checking as Safety Checking. In: FMICS 2002 (2002)Google Scholar
  5. 5.
    Claessen, K., Sorensson, N.: A Liveness Checking Algorithm That Counts. In: FMCAD 2012 (2012)Google Scholar
  6. 6.
    Dutertre, B., Sorea, M.: Modeling and Verification of a Fault-Tolerant Real-time Startup Protocol using Calendar Automata. In: FORMATS-FTRTFT 2004 (2004)Google Scholar
  7. 7.
    Kindermann, R., Junttila, T., Niemelä, I.: Complete SMT-Based Bounded Model Checking for Timed Automata. In: FMOODS/FORTE 2012 (2012)Google Scholar
  8. 8.
    de Moura, L., Owre, S., Shankar, N.: The SAL Language Manual. CSL Technical Report SRI-CSL-01-02 (2003)Google Scholar
  9. 9.
    Pike, L.: Real-Time System Verification by k-Induction. NASA Technical Memorandum TM-2005-213751 (2005)Google Scholar
  10. 10.
    Sheeran, M., Singh, S., Stålmarck, G.: Checking Safety Properties Using Induction and a SAT-Solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 108–125. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.DMIS, Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations