Leaf-Cutting Ants, Biology and Control

  • Isabelle Boulogne
  • Harry Ozier-Lafontaine
  • Gladys Loranger-Merciris
Part of the Sustainable Agriculture Reviews book series (SARV, volume 13)


Leaf-cutting ants (Formicidae, Myrmicinae, Attini) are found on the American continent and in the Caribbean and are known to live in symbiosis with a fungus. Among Attini tribe, Atta and Acromyrmex are the two genera, which commonly depend on fresh plant leaves and other plant material for their fungal garden. Overall, these ants are among the most economically damaging herbivorous species. A. octospinosus is classified among the most serious pests of tropical and subtropical America. Due to its foraging activity, it can cause serious damages from 20 to 30 % of crop production. Huge losses were observed in several vegetable and fruit crops, in crop of cacao or citrus orchards and in protected areas where some species may completely disappear due to their endemism. Economic losses due to these ants were estimated at several million dollars per year. Although Acromyrmex octospinosus is one of the most important species of leaf-cutters because of its economic impact there is a lack of review in the literature.

We review here the distribution, biology and different kind of control used and sustainable methods that can possibly help to manage. A. octospinosus is found only in Neotropics from Central America to northern of South America, including parts of West Indies. A colony is divided into males, breeding females, or gyne, and three castes of workers: small workers or ‘minor’, medium worker or ‘media’ and large workers or ‘major’. Pheromones are indispensable supports of social life of A. octospinosus. Foraging is conditioned by trail pheromone and takes place along a ‘line’ involving all castes of the colony. The foraging is divided in several steps. Indeed, the ants cut the plant material, transport it into the nest, lick it, cut it into smaller pieces, chew it, depose fecal fluid on it, cultivate mycelium fragment on this prepared mixture and incorporate it into the symbiotic fungus. Symbiotic fungus, or ‘fungus garden’, is a Basidomycete, Leucocoprinus gongylophorus (Heim) Moeller. It is the exclusive nutrition of both juvenile stages and the queen and is also a supplement of the adult workers diet. The ant also lives with an actinomycete, Pseudonocardia sp. This symbiont grows on the cuticle of all ants of the colony and protects fungus garden against fungal competitors and ants against ubiquist entomopathogenic bacteria and fungi.

The first techniques used to fight against A. octospinosus were mechanical methods which have only local efficiency and do not prevent from the reestablishment of colonies. Synthetic chemical control against A. octospinosus began in the twentieth century with a direct chemical control and afterward with toxic baits. The efficiency of these controls was limited but all of them caused severe injuries on environment and human health. This situation has prompted an increasing interest in alternative methods to control this pest. Laboratory and field tests of biological control were performed with spores of pathogenous fungus or ants predators into nest, with fungal symbiont’s extract and trail pheromone, with entomopathogenic fungus and nematodes. Most of these methods did not give the desired effect or were not confirmed in situ. Biopesticides using insecticidal and fungicidal plants are known to be environmentally safe because of their non-phytotoxicity, biodegradability and renewability. Thus, another alternative to chemical control of A. octospinosus has been explored with the insecticidal or fungicidal activities of plants extracts, which showed various effects on both A. octospinosus workers and Leucocoprinus gongylophorus in vitro cultures. These tests showed very encouraging in vitro preliminary results and may serve as alternatives to synthetic compounds to develop safer control agents of leaf-cutting ants.

Complex relationships and tripartite mutualism are involved between ants, fungus and actinomycete. All studies investigated only one side management. A tripartite management based on a combination of the three strategies should promote a more efficient integrated control and provide some interesting options for the control of this pest.


Acromyrmex octospinosus Tripartite mutualism Tripartite management Pseudonocardia sp Leucocoprinus gongylophorus Sustainable pest management Biopesticides 



The authors thank CEREGMIA and its director Fred Celimène for financial support to Isabelle Boulogne.


  1. AFSSA (2005) Evaluation des risques pour la santé humaine liés à une exposition au fipronil. Rapport Agence française de sécurité sanitaire des aliments (Afssa) et l’Agence française de sécurité sanitaire environnementale (Afsse).
  2. Boulogne I, Germosen-Robineau L, Ozier-Lafontaine H, Jacoby-Koaly C, Aurela L, Loranger-Merciris G (2012a) Acromyrmex octospinosus (Hymenoptera: Formicidae) management. I. Effects of TRAMIL’s insecticidal plant extracts. Pest Manag Sci 68:313–320. doi: 10.1002/ps.2267 PubMedCrossRefGoogle Scholar
  3. Boulogne I, Germosen-Robineau L, Ozier-Lafontaine H, Desfontaines L, Loranger- Merciris G (2012b) Acromyrmex octospinosus (Hymenoptera : Formicidae) management. Effects of TRAMIL’s fungicidal plant extracts. J Econ Entomol 105(4):1224–1233. doi: 10.1603/EC11313 PubMedCrossRefGoogle Scholar
  4. Boulogne I, Petit P, Ozier-Lafontaine H, Desfontaines L, Loranger-Merciris G (2012c) Insecticidal and antifungal chemicals produced by plants: a review. Environ Chem Lett 10(4):325–347. doi:10.1007/s10311-012- 0359–1CrossRefGoogle Scholar
  5. Cabidoche YM, Jannoyer M, Vannière H (2006) Conclusions du Groupe d’Etude et de Prospective, Pollution par les organochlorés aux Antilles, Aspects agronomiques Contributions CIRAD INRAGoogle Scholar
  6. Camargo RS, Forti LC, Lopes JFS, Nagamoto NS (2006) Studies on Leaf-cutting ants, Acromyrmex spp. (Formicidae, Attini): behavior, reproduction and control. In: Recent research developments in entomology, vol 5, pp 1–21 ISBN: 81-7736-246-1. Research Signpost 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India.
  7. Cherrett JM (1969) Baits for the control of leaf-cutting ants 1. Formulation. Trop Agric 46:81–90Google Scholar
  8. Crewe RM, Blum MS (1972) Alarm pheromones of the attini: their phylogenetic significance. J Insect Physiol 18:31–42. doi:10.1016/0022- 1910(72)90062-5CrossRefGoogle Scholar
  9. Cross JH, West JR, Silverstein RM, Jutsum AR, Cherrett JM (1982) Trail pheromone of the leaf-cutting ant, Acromyrmex octospinosus (Reich), (Formicidae: Myrmicinae). J Chem Ecol 8:1119–1124. doi: 10.1007/BF00988421 CrossRefGoogle Scholar
  10. Currie CR (2001) Prevalence and impact of a virulent parasite on a tripartite mutualism. Oecologia 128(1):99–106CrossRefGoogle Scholar
  11. Currie CR, Bot ANM, Boomsma JJ (2003) Experimental evidence of a tripartite mutualism: bacteria protect ant fungus gardens from specialized parasites. Oikos 101:91–102. doi: 10.1034/j.1600-0706.2003.12036.x CrossRefGoogle Scholar
  12. Da Silva ME, Diehl-Fleig E (1988) Avaliacao de diferentes linhagens de fungos entomopatogenicos para el controle da hormiga Atta sexdens piriventris (Santschi, 1919) (Hymenoptera: Formicidae). Ann Soc Ent Brasil 17(2)Google Scholar
  13. Decharme M (1978) Contributions à la connaissance du Leucocoprinus gongylophorus (Moller) Heim, champignon symbiote de la fourmi Acromyrmex octospinosus Reich. Mémoire de DEA, Université Pierre et Marie Curie Paris VIGoogle Scholar
  14. Decharme M (1980) Les champignons symbiotes de quelques fourmis attines; différents aspects de leur cytologie et de leur évolution dans la meule. Thèse de doctorat de 3ème cycle, Université Pierre et Marie Curie Paris VIGoogle Scholar
  15. Discover Life (2012) Map on Acromyrmex octospinosus (Reich, 1793) distribution See 19 Apr 2012
  16. Evershed RP, Morgan ED (1983) The amounts of trail pheromone substances in the venom of workers of four species of attine ants. Insect Biochem 13:469–474CrossRefGoogle Scholar
  17. Febvay G (1982) Quelques aspects (anatomie et enymologie) des relations nutritionnelles entre la Fourmi Attine Acromyrmex octospinosus (Hymenoptera, Formicidae) et son champignon symbiotique. Compte-Rendu de l’Académie d’Agriculture de France 68:617–622Google Scholar
  18. Febvay G, Kermarrec A (1983) Enzymes digestives de la founni attine Acromyrmex octospinosus (Reich): caractérisation des amylases, maltases et tréhalase des glandes labiales et de l’intestin moyen. Comptes Rendus de l’Académie des Sciences 296:453–456 ISSN : 0249–6313Google Scholar
  19. Febvay G, Decharme M, Kermarrec A (1984) Digestion of chitin by the labial glands of Acromyrmex octospinosus Reich (Hymenoptera: Formicidae). Can J Zool 62:229–234. doi: 10.1139/z84-038 CrossRefGoogle Scholar
  20. Febvay G, Kermarrec A, Maurer P (1990) Considérations sur les fourmis défoliatrices: cas de la fourmi manioc en Guadeloupe (problèmes, contraintes et perspectives). Info Zoo 3:48–56Google Scholar
  21. Fowler HG (1978) Foraging trails of leaf-cutting ants. J NewYork Entomol Soc 86(3):132–136Google Scholar
  22. Hervey A, Rogerson CT, Leong I (1977) Studies on fungi cultivated by ants. Brittonia 29(2):226–236. doi: 10.2307/2805856 CrossRefGoogle Scholar
  23. Kermarrec A, Mauléon H (1975) Quelques aspects de la pathogénie d’Entomophthora coronata Cost. Kervok. Pour la Fourmi-Manioc de la Guadeloupe Acromyrmex octospinosus (Formicidae, Attini). Annales de Parasitologie 50:351–360Google Scholar
  24. Kermarrec A, Mauléon H, Marival D (1988) Comparison of susceptibility of Acromyrmex octospinosus Reich (Attini, Formicidae) to two insect parasitic nematodes of the genera Heterorhabditis and Neoaplectana (Rhabditina, Nematode). Applied Myrmecology: a world perspective. Westview Press, BoulderGoogle Scholar
  25. Knapp JJ (1987) Studies of the Foraging Behaviour of the leafcutting ant, Acromyrmex octospinosus (Reich) in Guadeloupe. Thesis of Master of Science, University of SouthamptonGoogle Scholar
  26. Lewis T (1975) Colony size, density and distribution of leaf-cutting ant, Acromyrmex octospinosus (Reich) in cultivated fields. Trans R Entomol Soc Lond 127:51–64. doi: 10.1111/j.1365-2311.1975.tb00552.x CrossRefGoogle Scholar
  27. Lopez E, Orduz S (2003) Metarhizium anisopliae and Trichoderma viride for control of nests of the fungus-growing ant, Atta cephalotes. Biol Control 27:194–200. doi: 10.1016/S1049-9644(03)00005-7 CrossRefGoogle Scholar
  28. Machado V, Fleig EO, Luchese M (1988) Reacciones observadas en colonias de algunas especies de Acromyrmex (Hymenoptera: Formicidae) inoculadas con hongos entomopatogenos. Ciencia y Cultura 40(11)Google Scholar
  29. Mikheyev AS (2008) History, genetics and pathology of a leaf-cutting ant introduction: a case study of the Guadeloupe invasion. Biol Invasions 10:467–473. doi: 10.1007/s10530-007-9144-7 CrossRefGoogle Scholar
  30. Moser JC (1967) Trails of the leafcutters. J Am Mus Nat Hist LXXXVI(1):33–37Google Scholar
  31. Park SW, Park ST, Lee JE, Kim YM (2008) Pseudonocardia carboxydivorans sp. nov., a carbon monoxide-oxidizing actinomycete, and an emended description of the genus Pseudonocardia. Int J Syst Evol Microbiol 58(11):2475–2478. doi: 10.1099/ijs.0.65765-0 PubMedCrossRefGoogle Scholar
  32. Perez R, Trujillo Z (2002) Combate de Acromyrmex octospinosus (Reich) (Hymenoptera : Formicidae), con el cebo micoinsecticida BIBISAV-2. Fitosanidad 6:41–46 ISSN: 1562–3009Google Scholar
  33. Petit P (2004) Contribution à l’étude chimique de Lonchocarpus floribundus Bentham et de Lonchocarpus chrysophyllus Kleinhoonte. Synthèse de dérivés soufrés à partir d’éthers phénoliques naturels. Thèse de doctorat, Université des Antilles et de la GuyaneGoogle Scholar
  34. Pollard GV (1982) A review of the distribution, economic importance and control of leaf-cutting ants in the Caribbean region with an analysis of current control programmes. In: Urgent plant pest and disease problems in the Caribbean. Meeting of the Society for Plant Protection in the Caribbean, Ministry of Agriculture, Kingston (Jamaica)Google Scholar
  35. Quinlan RI, Cherrett JM (1978) Studies on the role of infrabuccal pocket of the leaf- cutting ant Acromyrmex octospinosus (Reich). Insectes Soc 25(3):237–245. doi: 10.1007/BF02224744 CrossRefGoogle Scholar
  36. Santos VA, Lorenz de Oliveira B, Samuels RI (2007) Selection of entomopathogenic fungi for use in combination with sub-lethal doses of imidacloprid: perspectives for the control of the leaf-cutting ant Atta sexdens rubropilosa Forel (Hymenoptera : Formicidae). Mycopathologia 163:233–240. doi: 10.1007/s11046-007-9009-8 PubMedCrossRefGoogle Scholar
  37. Toral G (2005) Evaluation in vitro de l’efficacité du fipronil sur Culex pipiens pipiens. Thèse de doctorat, Université Paul-Sabatier de ToulouseGoogle Scholar
  38. UNEP (United Nations Environment Programme) (2007) Projet d’évaluation de la gestion des risques : sulfonate de perfluorooctane. Convention de Stockholm sur les polluants organiques persistants, Comité d’étude des polluants organiques persistantsGoogle Scholar
  39. Weber NA (1966) The fungus growing ants. Science 153:587–604PubMedCrossRefGoogle Scholar
  40. Weber NA (1972) Gardening ants: the attines. Mem Am Philos Soc 92:1–146Google Scholar
  41. Wetterer JK (1991) Foraging ecology of the leaf-cutting ant Acromyrmex octospinosus in a Costa Rican rain forest. Psyche 98:361–371. doi: 10.1155/1991/46737 CrossRefGoogle Scholar
  42. Wetterer JK, Gruner DS, Lopez JE (1998) Foraging and nesting ecology of Acromyrmex octospinosus (Hymenoptera: Formicidae) in Costa Rican tropical dry forest. Fla Entomol 81(1):61–67CrossRefGoogle Scholar
  43. Wilson EO (1980) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta): II. The ergonomic optimization of leaf cutting. Behav Ecol Sociobiol 7(2):157–165. doi: 10.1007/BF00299521 CrossRefGoogle Scholar
  44. Wilson EO (1983) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). IV. Colony ontogeny of a. Cephalotes. Behav Ecol Sociobiol 14(1):55–60CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Isabelle Boulogne
    • 1
    • 2
    • 3
  • Harry Ozier-Lafontaine
    • 2
  • Gladys Loranger-Merciris
    • 1
    • 2
  1. 1.UFR Sciences exactes et naturellesUniversité des Antilles et de la GuyanePointe-à-Pitre Cedex (Guadeloupe)France
  2. 2.INRA, UR1321, ASTRO Agrosystèmes tropicauxPetit-Bourg (Guadeloupe)France
  3. 3.UFR des Sciences et Techniques, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, IRIBUniversité de RouenMont Saint AignanFrance

Personalised recommendations