Simulation of Q-Tensor Fields with Constant Orientational Order Parameter in the Theory of Uniaxial Nematic Liquid Crystals

  • Sören BartelsEmail author
  • Alexander Raisch


We propose a practical finite element method for the simulation of uniaxial nematic liquid crystals with a constant order parameter. A monotonicity result for Q-tensor fields is derived under the assumption that the underlying triangulation is weakly acute. Using this monotonicity argument we show the stability of a gradient flow type algorithm and prove the convergence outputs to discrete stable configurations as the stopping parameter of the algorithm tends to zero. Numerical experiments with singularities illustrate the performance of the algorithm. Furthermore, we examine numerically the difference of orientable and non-orientable stable configurations of liquid crystals in a planar two dimensional domain and on a curved surface. As an application, we examine tangential line fields on the torus and show that there exist orientable and non-orientable stable states with comparing Landau-de Gennes energy and regions with different tilts of the molecules.


Liquid Crystal Line Field Nematic Liquid Crystal Director Field Stable Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge support by the DFG through the Collaborative Research Center (SFB) 611 Singular Phenomena and Scaling in Mathematical Models.


  1. 1.
    Alouges, F.: Liquid crystal configurations: the numerical point of view. In: Chipot, M., Saint Jean Paulin, J., Shafrir, I. (eds.) Progress in Partial Differential Equations: The Metz Surveys, 3. Volume 314 of Pitman Research Notes in Mathematics Series, pp. 3–17. Longman Scientific & Technical, Harlow (1994)Google Scholar
  2. 2.
    Alouges, F.: A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34(5), 1708–1726 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alouges, F., Ghidaglia, J.M.: Minimizing Oseen-Frank energy for nematic liquid crystals: algorithms and numerical results. Ann. Inst. H. Poincaré Phys. Théor. 66(4), 411–447 (1997)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ball, J.M., Zarnescu, A.: Orientability and energy minimization for liquid crystal models. Mol. Cryst. Liq. Cryst. 495, 573–585 (2008)CrossRefGoogle Scholar
  5. 5.
    Bartels, S.: Finite element approximation of harmonic maps between Surfaces. Habilitation thesis, Humboldt Universität zu Berlin, Berlin (2009)Google Scholar
  6. 6.
    Bartels, S.: Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces. Math. Comput. 79(271), 1263–1301 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bartels, S.: Finite element approximation of large bending isometries. Numerische Mathematik 124(3), 415–440 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bartels, S., Dolzmann, G., Nochetto, R., Raisch, A.: Finite element methods for director fields on flexible surfaces. Interfaces Free Bound. 14(2), 231–272 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 25001)]Google Scholar
  10. 10.
    de Gennes, P.-G., Prost, J.: The Physics of Liquid Crystals. International Series of Monographs on Physics, 2nd edn. Oxford University Press, New York (1995)Google Scholar
  11. 11.
    Jones, J.C.: 40.1: Invited paper: the zenithal bistable device: from concept to consumer. SID Symp. Dig. Tech. Pap. 38(1), 1347–1350 (2007)Google Scholar
  12. 12.
    Leslie, F.M.: Theory of flow phenomena in liquid crystals. Adv. Liq. Cryst. 4, 1–81 (1979)CrossRefGoogle Scholar
  13. 13.
    Lin, F., Liu, C.: Static and dynamic theories of liquid crystals. J. Partial Differ. Equ. 14(4), 289–330 (2001)Google Scholar
  14. 14.
    Majumdar, A., Zarnescu, A.: Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond. Arch. Ration. Mech. Anal. 196(1), 227–280 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Persson, P.-O., Strang, G.: A simple mesh generator in Matlab. SIAM Rev. 46(2), 329–345 (2004). (Electronic)Google Scholar
  16. 16.
    Raisch, A.: Finite element methods for geometric problems. Phd thesis, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn (2012)Google Scholar
  17. 17.
    Uche, C., Elston, S.J., Parry-Jones, L.A.: Microscopic observation of zenithal bistable switching in nematic devices with different surface relief structures. J. Phys. D Appl. Phys. 38(13), 2283 (2005)CrossRefGoogle Scholar
  18. 18.
    Virga, E.G.: Variational Theories for Liquid Crystals. Volume 8 of Applied Mathematics and Mathematical Computation. Chapman & Hall, London (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Abteilung für Angewandte MathematikUniversität FreiburgFreiburgGermany
  2. 2.Institut für Numerische SimulationRheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations