A Moving Least Squares Approach to the Construction of Discontinuous Enrichment Functions

Chapter

Abstract

In this paper we are concerned with the construction of a piecewise smooth field from scattered data by a moving least squares approach. This approximation problem arises when so-called enrichment functions for a generalized finite element method are computed by a particle scheme on a finer scale. The presented approach is similar in spirit to the so-called visibility criterion but avoids the explicit reconstruction of the location of the discontinuity.

References

  1. 1.
    Aragón, A.M., Duarte, C.A.M., Geubelle, P.H.: Generalized finite element enrichment functions for discontinuous gradient fields. Int. J. Numer. Methods Eng. 82(2), 242–268 (2010)MATHGoogle Scholar
  2. 2.
    Babuška, I., Banerjee, U.: Stable generalized finite element method. Technical report, ICES (2011)Google Scholar
  3. 3.
    Babuška, I., Lipton, R.: Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. SIAM Multiscale Model. Simul. 9(1), 373–406 (2011)CrossRefMATHGoogle Scholar
  4. 4.
    Babuška, I., Melenk, J.M.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139, 289–314 (1996). Special issue on meshless methodsGoogle Scholar
  5. 5.
    Babuška, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Methods Eng. 40, 727–758 (1997)CrossRefMATHGoogle Scholar
  6. 6.
    Babuška, I., Caloz, G., Osborn, J.E.: Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31, 945–981 (1994)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Babuška, I., Banerjee, U., Osborn, J.E.: Meshless and generalized finite element methods: a survey of some major results. In: Griebel, M., Schweitzer M.A. (eds.) Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 26, pp. 1–20. Springer, Berlin/Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Belytschko, T., Moës, N., Usui, S., Parimi, C.: Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50, 993–1013 (2001)CrossRefMATHGoogle Scholar
  10. 10.
    Duarte, C.A., Kim, D.J.: Analysis and applications of a generalized finite element method with global-local enrichment functions. Comput. Mech. 50, 563–578 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Duarte, C.A.M., Babuška, I., Oden, J.T.: Generalized finite element methods for three dimensional structural mechanics problems. Comput. Struct. 77, 215–232 (2000)CrossRefGoogle Scholar
  12. 12.
    Duarte, C.A.M., Hamzeh, O.N., Liszka, T.J., Tworzydlo, W.W.: A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Int. J. Numer. Methods Eng. 190, 2227–2262 (2001)MATHGoogle Scholar
  13. 13.
    Duarte, C.A., Reno, L.G., Simone, A.: A higher order generalized FEM for through-the-thickness branched cracks. Int. J. Numer. Methods Eng. 72(3), 325–351 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Farwig, R.: Multivariate interpolation of arbitrarily spaced data by moving least squares methods. J. Comput. Appl. Math. 16(1), 79–93 (1986)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fasshauer, G.F.: Meshfree Approximation Methods with MATLAB. World Scientific, River Edge (2007)MATHGoogle Scholar
  16. 16.
    Fries, T.P., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84(3), 253–304 (2010)MathSciNetMATHGoogle Scholar
  17. 17.
    Kim, D.J., Duarte, C.A., Proenca, S.P.: Generalized finite element method with global-local enrichments for nonlinear fracture analysis. In: da Costa Mattos, H.S., Alves, M. (eds.) Mechanics of Solids in Brazil 2009, Rio de Janeiro (2009)Google Scholar
  18. 18.
    Levin, D.: The approximation power of moving least-squares. Math. Comput. 67(224), 1517–1531 (1998)CrossRefMATHGoogle Scholar
  19. 19.
    Li, S., Liu, W.K.: Meshfree Particle Methods. Springer, Berlin/New York (2004). IncorporatedGoogle Scholar
  20. 20.
    López de Silanes, M.C., Parra, M.C., Pasadas, M., Torrens, J.J.: Spline approximation of discontinuous multivariate functions from scattered data. J. Comput. Appl. Math. 131(1–2), 281–298 (2001)Google Scholar
  21. 21.
    Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)CrossRefMATHGoogle Scholar
  22. 22.
    Mohammadi, S.: Extended Finite Element Method. Blackwell Publishing, Oxford/Malden (2008)CrossRefMATHGoogle Scholar
  23. 23.
    Pereira, J.P., Duarte, C.A.M., Guoy, D., Jiao, X.: Hp-generalized fem and crack surface representation for non-planar 3-d cracks. Int. J. Numer. Methods Eng. 77(5), 601–633 (2009)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge/New York (2007)Google Scholar
  25. 25.
    Schweitzer, M.A.: Generalized finite element and meshfree methods. Habilitation, Univeristät Bonn (2008)Google Scholar
  26. 26.
    Schweitzer, M.A.: Generalizations of the finite element method. Cent. Eur. J. Math. 10, 3–24 (2012)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference, ACM’68, pp. 517–524. ACM, New York (1968)Google Scholar
  28. 28.
    Strouboulis, T., Babuška, I., Copps, K.: The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181(I 3), 43–69 (2000)Google Scholar
  29. 29.
    Strouboulis, T., Copps, K., Babuška, I.: The generalized finite element method. Comput. Methods Appl. Mech. Eng. 190, 4081–4193 (2001)CrossRefMATHGoogle Scholar
  30. 30.
    Strouboulis, T., Zhang, L., Babuška, I.: Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids. Comput. Methods Appl. Mech. Eng. 192, 3109–3161 (2003)CrossRefMATHGoogle Scholar
  31. 31.
    Strouboulis, T., Zhang, L., Babuška, I.: p-Version of the generalized FEM using mesh-based handbooks with applications to multiscale problems. Int. J. Numer. Methods Eng. 60, 1639–1672 (2004)Google Scholar
  32. 32.
    Wendland, H.: Local polynomial reproduction and moving least squares approximation. IMA J. Numer. Anal. 21, 285–300 (2001)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Xu, J., Belytschko, T.: Discontinuous radial basis function approximations for meshfree methods. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations II. Lecture Notes in Computational Science and Engineering, vol. 43, pp. 231–253. Springer, Berlin (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institut für Parallele und Verteilte SystemeUniversität StuttgartStuttgartGermany

Personalised recommendations