A Nested Variational Time Discretization for Parametric Anisotropic Willmore Flow

Chapter

Abstract

A variational time discretization of anisotropic Willmore flow combined with a spatial discretization via piecewise affine finite elements is presented. Here, both the energy and the metric underlying the gradient flow are anisotropic, which in particular ensures that Wulff shapes are invariant up to scaling under the gradient flow. In each time step of the gradient flow a nested optimization problem has to be solved. Thereby, an outer variational problem reflects the time discretization of the actual Willmore flow and involves an approximate anisotropic L2-distance between two consecutive time steps and a fully implicit approximation of the anisotropic Willmore energy. The anisotropic mean curvature needed to evaluate the energy integrand is replaced by the time discrete, approximate speed from an inner, fully implicit variational scheme for anisotropic mean curvature motion. To solve the nested optimization problem a Newton method for the associated Lagrangian is applied. Computational results for the evolution of curves underline the robustness of the new scheme, in particular with respect to large time steps.

References

  1. 1.
    Balzani, N., Rumpf, M.: A nested variational time discretization for parametric Willmore flow. Interfaces Free Bound. 14(4), 431–454 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Barrett, J.W., Garcke, H., Nürnberg, R.: A parametric finite element method for fourth order geometric evolution equations. J. Comp. Phys. 222, 441–467 (2007)CrossRefMATHGoogle Scholar
  3. 3.
    Barrett, J.W., Garcke, H., Nürnberg, R.: Numerical approximation of anisotropic geometric evolution equations in the plane. IMA J. Numer. Anal. 28(2), 292–330 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Barrett, J.W., Garcke, H., Nürnberg, R.: Parametric approximation of isotropic and anisotropic elastic flow for closed and open curves. Numer. Math. 120, 489–542 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bellettini, G.: Anisotropic and crystalline mean curvature flow. In: Bao, D., Bryant, R.L., Chern, S.S., Shen, Z. (eds.) A Sampler of Riemann-Finsler Geometry, vol. 50, pp. 49–82. Cambridge University Press, Cambridge (2004)Google Scholar
  6. 6.
    Bellettini, G., Mugnai, L.: Anisotropic geometric functionals and gradient flows. Banach Cent. Publ. 86, 21–43 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bellettini, G., Caselles, V., Chambolle, A., Novaga, M.: Crystalline mean curvature flow of convex sets. Arch. Ration. Mech. Anal. 179(1), 109–152 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the SIGGRAPH 2000, New Orleans, pp. 417–424 (2000)Google Scholar
  9. 9.
    Bertalmio, M., Bertozzi, A., Sapiro, G.: Navier-Stokes, fluid dynamics, and image and video inpainting. In: IEEE Proceedings of the International Conference on Computer Vision and Pattern Recognition, Kauai, vol. 1, pp. 355–362 (2001)Google Scholar
  10. 10.
    Bobenko, I.A., Schröder, P.: Discrete Willmore Flow, pp. 101–110. ACM (2005)Google Scholar
  11. 11.
    Chambolle, A.: An algorithm for mean curvature motion. Interfaces Free Bound. 6, 195–218 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chambolle, A., Novaga, M.: Convergence of an algorithm for anisotropic mean curvature motion. SIAM J. Math. Anal. 37, 1978–1987 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chan, T.F., Kang, S.H., Shen, J.: Euler’s elastica and curvature-based inpainting. SIAM Appl. Math. 63(2), 564–592 (2002)MathSciNetMATHGoogle Scholar
  14. 14.
    Clarenz, U.: Enclosure theorems for extremals of elliptic parametric functionals. Calc. Var. 15, 313–324 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Clarenz, U.: The Wulff-shape minimizes an anisotropic Willmore functional. Interfaces Free Bound. 6(3), 351–359 (2004)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Clarenz, U., Dziuk, G., Rumpf, M.: On generalized mean curvature flow in surface processing. In: Karcher, H., Hildebrandt, S. (eds.) Geometric Analysis and Nonlinear Partial Differential Equations, pp. 217–248. Springer, Berlin/New York (2003)CrossRefGoogle Scholar
  17. 17.
    Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., Rusu, R.: A finite element method for surface restoration with smooth boundary conditions. Comput. Aided Geom. Des. 21(5), 427–445 (2004)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Deckelnick, K., Dziuk, G.: Error analysis of a finite element method for the Willmore flow of graphs. Interfaces Free Bound. 8, 21–46 (2006)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Deckelnick, K., Dziuk, G.: Error analysis for the elastic flow of parametrized curves. Math. Comp. 78(266), 645–671 (2009)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Deckelnick, K., Schieweck, F.: Error analysis for the approximation of axisymmetric Willmore flow by C1-elements. Interfaces Free Bound. 12(4), 551–574 (2010)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Diewald, U.: Anisotrope Krümmungsflüsse parametrischer Flächen sowie deren Anwendung in der Flächenverarbeitung. Dissertation, University Duisburg (2005)Google Scholar
  22. 22.
    Droske, M.: On variational problems and gradient flows in image processing. Dissertation, University Duisburg (2005)MATHGoogle Scholar
  23. 23.
    Droske, M., Rumpf, M.: A level set formulation for Willmore flow. Interfaces Free Bound. 6(3), 361–378 (2004)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Du, Q., Liu, C., Wang, X.: Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys. 212(2), 757–777 (2006)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations. Lecture Notes in Mathematics 1357, pp. 142–155. Springer, Berlin/New York (1988)Google Scholar
  26. 26.
    Dziuk, G.: An algorithm for evolutionary surfaces. Numer. Math. 58, 603–611 (1991)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Dziuk, G.: Convergence of a semi-discrete scheme for the curve shortening flow. Math. Models Methods Appl. Sci. 4, 589–606 (1994)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Dziuk, G.: Discrete anisotropic curve shortening flow. Siam J. Numer. Anal. 36(6), 1808–1830 (1999)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung 28c, 693–703 (1973)Google Scholar
  30. 30.
    Kuwert, E., Schätzle, R.: The Willmore flow with small initial energy. J. Differ. Geom. 57(3), 409–441 (2001)MATHGoogle Scholar
  31. 31.
    Kuwert, E., Schätzle, R.: Gradient flow for the Willmore functional. Commun. Anal. Geom. 10(5), 1228–1245 (2002). (Electronic)Google Scholar
  32. 32.
    Luckhaus, S., Sturzenhecker, T.: Implicit time discretization for the mean curvature flow equation. Calc. Var. 3, 253–271 (1995)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Mayer, U., Simonett, G.: A numerical scheme for axisymmetric solutions of curvature driven free boundary problems with applications to the Willmore flow. Interfaces Free Bound. 4(1), 89–109 (2002)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Mumford, D.: Elastica and computer vision. In: Bajaj, C. (ed.) Algebraic Geometry and Its Applications, pp. 491–506. Springer, New York (1994)CrossRefGoogle Scholar
  35. 35.
    Nemitz, O.: Anisotrope Verfahren in der Bildverarbeitung: Gradientenflüsse, Level-Sets und Narrow Bands. Dissertation, University of Bonn (2008).Google Scholar
  36. 36.
    Nitzberg, M., Mumford, D., Shiota, T.: Filtering, Segmentation and Depth. Lecture Notes in Computer Science, vol. 662. Springer, Berlin/Heidelberg (1993)Google Scholar
  37. 37.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York/Berlin (1999)CrossRefMATHGoogle Scholar
  38. 38.
    Olischläger, N., Rumpf, M.: Two step time discretization of Willmore flow. Accepted at IMA Conference on the Mathematics of Surfaces (2009)Google Scholar
  39. 39.
    Palmer, B.: Equilibria for anisotropic bending energies. Math. Phys. 50(2), 023512 (2009)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Polden, A.: Closed curves of least total curvature. SFB 382 Tübingen, Preprint 13 (1995)Google Scholar
  41. 41.
    Polden, A.: Curves and surfaces of least total curvature and fourth-order flows. Dissertation, Universität Tübingen (1996)Google Scholar
  42. 42.
    Pozzi, P.: On the gradient flow for the anisotropic area functional. Math. Nachr. 285, 707–726 (2012)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Rivière, T.: Analysis aspects of Willmore surfaces. Invent. Math. 174(1), 1–45 (2008)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Rusu, R.: An algorithm for the elastic flow of surfaces. Interfaces Free Bound. 7, 229–239 (2005)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Schaback, R., Wendland, H.: Numerische Mathematik, 5th edn. Springer, Berlin (2004)Google Scholar
  46. 46.
    Seifert, U.: Configurations of fluid membranes and vesicles. Adv. Phys. 46, 13–137 (1997)CrossRefGoogle Scholar
  47. 47.
    Simonett, G.: The Willmore flow near spheres. Diff. Integral Eq. 14(8), 1005–1014 (2001)MathSciNetMATHGoogle Scholar
  48. 48.
    Welch, W., Witkin, A.: Variational surface modeling. Comput. Graph. 26(2), 157–166 (1992)CrossRefGoogle Scholar
  49. 49.
    Willmore, T.: Riemannian Geometry. Claredon, Oxford (1993)MATHGoogle Scholar
  50. 50.
    Xu, G., Pan, Q.: G1 surface modelling using fourth order geometric flows. Comput. Aided Des. 38(4), 392–403 (2006)CrossRefGoogle Scholar
  51. 51.
    Yoshizawa, S., Belyaev, A.G.: Fair triangle mesh generation with discrete elastica. In: Proceedings of the Geometric Modeling and Processing: Theory and Applications (GMP’02), pp. 119–123. IEEE Computer Society, Washington, DC (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institut für Numerische SimulationRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  2. 2.Fakultät für MathematikUniversität DuisburgDuisburgGermany

Personalised recommendations