ONR MURI Project on Soil Blast Modeling and Simulation

  • Richard Regueiro
  • Ronald Pak
  • John McCartney
  • Stein Sture
  • Beichuan Yan
  • Zheng Duan
  • Jenna Svoboda
  • WoongJu Mun
  • Oleg Vasilyev
  • Nurlybek Kasimov
  • Eric Brown-Dymkoski
  • Curt Hansen
  • Shaofan Li
  • Bo Ren
  • Khalid Alshibli
  • Andrew Druckrey
  • Hongbing Lu
  • Huiyang Luo
  • Rebecca Brannon
  • Carlos Bonifasi-Lista
  • Asghar Yarahmadi
  • Emad Ghodrati
  • James Colovos
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Current computational modeling methods for simulating blast and ejecta in soils resulting from the detonation of buried explosives rely heavily on continuum approaches such as Arbitrary Lagrangian-Eulerian (ALE) and pure Eulerian shock-physics techniques. These methods approximate the soil as a Lagrangian solid continuum when deforming (but not flowing) or an Eulerian non-Newtonian fluid continuum when deforming and flowing at high strain rates. These two extremes do not properly account for the transition from solid to fluid-like behavior and vice versa in soil, nor properly address advection of internal state variables and fabric tensors in the Eulerian approaches. To address these deficiencies on the modeling side, we are developing a multiscale multiphase hybrid Lagrangian particle-continuum computational approach, in conjunction with coordinated laboratory experiments for parameter calibration and model validation. This paper provides an overview of the research approach and current progress for this Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) project.

Keywords

Soil blast Constitutive modeling Multiscale computational modeling Buried soil explosive geotechnical centrifuge experiments X-ray computed tomography Quasi-static to high strain rate experimental soil mechanics 

References

  1. 1.
    Angot P, Bruneau C-H, Fabrie P (1999) A penalization method to take into account obstacles in viscous flows. Numerische Mathematik 81:497–520MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bae Y, Moon YJ (2012) On the use of Brinkman penalization method for computation of acoustic scattering from complex boundaries. Comput Fluids 55:48–56MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bui HH, Fukagawa R, Sako K, Ohno S (2007) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int J Numer Anal Methods Géoméch 32(12):1537–1570CrossRefGoogle Scholar
  4. 4.
    Danielson KT, Hao S, Liu W-K, Uras A, Li S (2000) Parallel computation of meshless methods for explicit dynamic analysis. Int J Numer Methods Eng 47:1323–1341CrossRefMATHGoogle Scholar
  5. 5.
    Davies MCR (1994) Dynamic soil-structure interaction resulting from blast loading. In: Leung et al (eds) Proceedings of the centrifuge 94, Balkema, pp 319–324Google Scholar
  6. 6.
    Feireisl E, Neustupa J, Stebel S (2011) Convergence of a Brinkman-type penalization for compressible fluid flows. J Differ Equ 250:596–606MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kadoch B, Kolomenskiy D, Angot P, Schneider K (2012) A volume penalization method for incompressible flows and scalar advection-diffusion with moving obstacles. J Comput Phys 231(12):4365–4383MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kevlahan NK-R, Ghidaglia J-M (2001) Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization. Eur J Mech B Fluids 20(3):333–350Google Scholar
  9. 9.
    Li S, Liu W-K (2004) Meshfree particle methods, 1st edn. Springer, BerlinGoogle Scholar
  10. 10.
    Liu Q, Vasilyev OV (2007) Brinkman penalization method for compressible flows in complex geometries. J Comput Phys 227(2):946–966MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lu Y, Wang ZQ, Chong K (2005) A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations. Soil Dyn Earthq Eng 25(4):275–288CrossRefGoogle Scholar
  12. 12.
    Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261MathSciNetCrossRefGoogle Scholar
  13. 13.
    Pak RYS, Guzina BB (1995) Dynamic characterization of vertically-loaded foundations on granular soils. J Geotech Eng 121(3):274–286CrossRefGoogle Scholar
  14. 14.
    Pak RYS, Soudkhah M (2011) On experimental synthesis of seismic horizontal free-field motion of soil in finite-domain simulations with absorbing boundary. Soil Dyn Earthq Eng 31(11):1529–1539CrossRefGoogle Scholar
  15. 15.
    Regueiro RA, Yan B (2013) Computational homogenization and partial overlap coupling between micropolar elastic continuum finite elements and elastic spherical discrete elements in one dimension. In: Li S, Gao X-L (eds) Handbook of micromechanics and nanomechanics, vol 1. Pan Stanford, Singapore, pp 1–45Google Scholar
  16. 16.
    Sadeghirad A, Brannon RM, Burghardt J (2011) A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int J Numer Methods Eng 86(12):1435–1456MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Sulsky D, Chen A, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118:179–196MathSciNetMATHGoogle Scholar
  18. 18.
    Vasilyev OV (2003) Solving multi-dimensional evolotion problems with localized structures using second generation wavelets. Int J Comput Fluid Dyn (Special issue on High-resolut methods in Comput Fluid Dyn) 17(2):151–168MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Wang ZQ, Lu Y, Hao H, Chong K (2005) A full coupled numerical analysis approach for buried structures subjected to subsurface blast. Comput Struct 83(4–5):339–356CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2014

Authors and Affiliations

  • Richard Regueiro
    • 1
  • Ronald Pak
    • 1
  • John McCartney
    • 1
  • Stein Sture
    • 1
  • Beichuan Yan
    • 1
  • Zheng Duan
    • 1
  • Jenna Svoboda
    • 1
  • WoongJu Mun
    • 1
  • Oleg Vasilyev
    • 2
  • Nurlybek Kasimov
    • 2
  • Eric Brown-Dymkoski
    • 2
  • Curt Hansen
    • 2
  • Shaofan Li
    • 3
  • Bo Ren
    • 3
  • Khalid Alshibli
    • 4
  • Andrew Druckrey
    • 4
  • Hongbing Lu
    • 5
  • Huiyang Luo
    • 5
  • Rebecca Brannon
    • 6
  • Carlos Bonifasi-Lista
    • 6
  • Asghar Yarahmadi
    • 6
  • Emad Ghodrati
    • 6
  • James Colovos
    • 6
  1. 1.Department of Civil, Environmental, and Architectural EngineeringUniversity of Colorado, BoulderBoulderUSA
  2. 2.Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderUSA
  3. 3.Department of Civil and Environmental EngineeringUniversity of California, BerkeleyBerkeleyUSA
  4. 4.Department of Civil and Environmental EngineeringUniversity of TennesseeKnoxvilleUSA
  5. 5.Department of Mechanical EngineeringUniversity of Texas, DallasRichardsonUSA
  6. 6.Department of Mechanical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations