Deconvolving Strain Maps Obtained with the Grid Method

  • M. Grédiac
  • F. Sur
  • C. Badulescu
  • J.-D. Mathias
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


The use of various deconvolution techniques to enhance strain maps obtained with the grid method is addressed in this study. Since phase derivative maps obtained with this measurement technique can be approximated by their actual counterparts convolved by the envelope of the kernel used to extract phases and phase derivatives, non-blind restoration techniques can be used to perform deconvolution. Six deconvolution techniques are compared here in order to restore a synthetic phase derivative map. Obtained results are analyzed and discussed.


Deconvolution Displacement Grid method Strain measurement Metrological performance 


  1. 1.
    Bornert M, Brémand F, Doumalin P, Dupré J-C, Fazzini M, Grédiac M, Hild F, Mistou S, Molimard J, Orteu J-J, Robert L, Surrel Y, Vacher P, Wattrisse B (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49(3):353–370CrossRefGoogle Scholar
  2. 2.
    Lava P, Cooreman S, Coppieters S, De Strycker M, Debruyne D (2009) Assessment of measuring errors in DIC using deformation fields generated by plastic FEA. Opt Lasers Eng 47:747–753CrossRefGoogle Scholar
  3. 3.
    Wang YQ, Sutton MA, Bruck HA, Schreier HW (2009) Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements. Strain 45:160–178CrossRefGoogle Scholar
  4. 4.
    Meng LB, Jin GC, Yao XF (2007) Application of iteration and finite element smoothing technique for displacement and strain measurement of digital speckle correlation. Opt Lasers Eng 45(1):57–63CrossRefGoogle Scholar
  5. 5.
    Gonzalez RC, Woods RE (2006) Digital image processing, 3rd edn. Prentice-Hall, Upper Saddle River, NJGoogle Scholar
  6. 6.
    Sur F, Grédiac M (2013) Towards deconvolution to enhance the grid method for in-plane strain measurement, Inverse Problems and Imaging (In revision)Google Scholar
  7. 7.
    Maas AM, Somers PAAM (2006) Two-dimensional deconvolution applied to phase-stepped shearography. Opt Lasers Eng 26:1594–1602Google Scholar
  8. 8.
    Dhanasekar B, Ramamoorthy B (2010) Restoration of blurred images for surface roughness evaluation using machine vision. Tribol Int 43:268–276CrossRefGoogle Scholar
  9. 9.
    Piro JL, Grédiac M (2004) Producing and transferring low-spatial-frequency grids for measuring displacement fields with moiré and grid methods. Exp Tech 28(4):23–26CrossRefGoogle Scholar
  10. 10.
    Grédiac M, Sur F, Badulescu C, Mathias JD (2013) Using deconvolution to improve the metrological performance of the grid method. Opt Lasers Eng 51:716–734CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2014

Authors and Affiliations

  • M. Grédiac
    • 1
  • F. Sur
    • 2
  • C. Badulescu
    • 3
  • J.-D. Mathias
    • 4
  1. 1.Institut Pascal, UMR CNRS 6602Clermont Université, Université Blaise PascalClermont-FerrandFrance
  2. 2.Laboratoire Lorrain de Recherche en Informatique et ses Applications, UMR CNRS 7503Université de Lorraine, CNRS, INRIA projet MagritVandoeuvre-lès-Nancy, CedexFrance
  3. 3.Laboratoire Brestois de Mécanique et des SystèmesENSTA BretagneBrest, Cedex 9France
  4. 4.Laboratoire d’Ingénierie pour les Systèmes ComplexesIRSTEA, Campus universitaire des CézeauxAubière, CedexFrance

Personalised recommendations