Soft-X-Ray Lasing down to 6.85 nm in Ni-Like Samarium

Part of the Springer Proceedings in Physics book series (SPPHY, volume 147)

Abstract

We report on recent progress achieved in X-ray laser research at the Institute of Applied Physics of the University of Bern. Using the 10-TW Nd:glass CPA (chirped-pulse amplification) laser system and the grazing-incidence pumping (GRIP) scheme, intense soft-X-ray lasing has been obtained on the 4d → 4p, J=0–1 line of samarium (Sm, Z=62) at 7.36 nm, with weak lasing observed at 6.85 nm. This was achieved with main pulse energies of 10–12 J and a pulse duration of 1.5 ps. Crucial to these results was the introduction of a second, relatively intense (22.7 %) prepulse ∼30 ps before the main pulse, in addition to the 13.4 % prepulse incident on target several nanoseconds before the main pulse.

References

  1. 1.
    Keenan, R., et al.: High-repetition-rate grazing-incidence pumped X-ray laser operating at 18.9 nm. Phys. Rev. Lett. 94, 103901 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    Larotonda, M.A., et al.: Characteristics of a saturated 18.9-nm tabletop laser operating at 5-Hz repetition rate. IEEE J. Sel. Top. Quantum Electron. 10, 1363 (2004) CrossRefGoogle Scholar
  3. 3.
    Rocca, J.J., et al.: Saturated 13.2-nm high-repetition-rate laser in nickel-like cadmium. Opt. Lett. 30, 2581 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    Grünig, M., et al.: Saturated x-ray lasing in Ni-like Sn at 11.9 nm using the GRIP scheme. Opt. Commun. 282, 267 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    Imesch, C., et al.: Gain-saturated Ni-like antimony laser at 11.4 nm in grazing-incidence pumping geometry. Opt. Commun. 283, 66 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    Alessi, D., et al.: Gain-saturated 10.9-nm tabletop laser operating at 1 Hz repetition rate. Opt. Lett. 35, 414 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    Shlyaptsev, V.N., et al.: Numerical study of transient and capillary x-ray lasers and their applications. In: Proc. 9th Int. Conf. X-Ray Lasers. IOP Conf. Ser., vol. 186, p. 325 (2005) Google Scholar
  8. 8.
    Pert, G.J.: Optimizing the performance of nickel-like collisionally pumped x-ray lasers. Phys. Rev. A 73, 033809 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    Chanteloup, J.-C., et al.: Pulse-front control of 15-TW pulses with a tilted compressor and application to the subpicosecond traveling-wave pumping of a soft-x-ray laser. J. Opt. Soc. Am. B 17, 151 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    Staub, F., et al.: Soft-x-ray lasing in nickel-like barium at 9.2 nm using the grazing-incidence scheme. Opt. Commun. 285, 2118 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    Sasaki, A., et al.: The gain distribution of the transient collisional excited X-ray lasers. J. Quant. Spectrosc. Radiat. Transf. 71, 665 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    Brown, D.C.: High-Peak-Power Nd: Glass Laser Systems. Springer, Berlin (1981) CrossRefGoogle Scholar
  13. 13.
    Seznec, S., et al.: Towards the 1019–1020 W/cm−2 regime with amplified chirped pulses: basic limitations and solutions. Opt. Commun. 87, 331 (1992) ADSCrossRefGoogle Scholar
  14. 14.
    Staub, F., et al.: Line-focus generation for X-ray laser pumping. In: Sebban, S., et al. (eds.) X-Ray Lasers 2012. Springer Proceedings in Physics, vol. 147. Springer, Cham (2013). Chapter 38 in this book Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Applied PhysicsBernSwitzerland

Personalised recommendations