Source Development of Novel Coherent X-Rays and Their Applications in JAEA

  • T. Kawachi
  • A. Sasaki
  • M. Nishikino
  • M. Ishino
  • N. Hasegawa
  • T. Imazono
  • Y. Ochi
  • M. Tanaka
  • A. Y. Faenov
  • T. A. Pikuz
  • A. Pirozhkov
  • T. Esirkepov
  • T. Nakamura
  • M. Kando
  • S. V. Bulanov
  • K. Kondo
  • K. Janulewicz
  • C. M. Kim
  • H. Stiel
  • G. Norman
  • T. Suemoto
  • T. Tomita
  • K. Namikawa
  • M. Yamagiwa
  • Y. Kato
Part of the Springer Proceedings in Physics book series (SPPHY, volume 147)

Abstract

This paper reviews recent progress in the source development of intense coherent x-rays and the applications in the research fields such as material science and laser processing in Japan Atomic Energy Agency (JAEA). In the source development, the polarization of the fully spatial coherent 13.9 nm soft x-ray laser (SXRL) in the transient collisional excitation (TCE) scheme was investigated experimentally. The result indicated that the SXRL beam was strongly polarized in the direction perpendicular to the target surface. In the alternative schemes toward the short wavelength region, intense higher-order harmonics with the photon energy of more than 300 eV was observed from a relativistic plasma generated with the laser intensity higher than 1018 W/cm2. In the applications of the 13.9 nm TCE laser, we observed temporal evolution of surface distortion of Pt sample pumped by a 80 fs optical pulse by use of x-ray laser interferometer using double Lloyd’s mirrors and reflectometer. In the study of SXRL ablation, the melting depth of the substances using single shot SXRL exposure was measured, and the result was quantitatively consistent with the calculated result based upon the spallative ablation model by molecular-dynamics code.

Notes

Acknowledgements

This work is partly supported by auspices of Japan Grant-in-Aid for Scientific research, Kiban (B), No. 25289244.

References

  1. 1.
    Tanaka, M., et al.: X-ray laser beam with diffraction-limited divergence generated with two gain media. Opt. Lett. 28, 1680–1682 (2003) ADSCrossRefGoogle Scholar
  2. 2.
    Namikawa, K., et al.: Direct observation of the critical relaxation of polarization clusters in BaTiO3 using a pulsed x-ray laser technique. Phys. Rev. Lett. 103, 197401 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    Namba, S., et al.: Enhancement of double Auger decay probability in Xe clusters irradiated with a SXRL pulse. Phys. Rev. Lett. 99, 043004 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    Suemoto, T., et al.: Single-shot picosecond interferometry with one-nanometer resolution for dynamical surface morphology using a soft x-ray laser. Opt. Express 18, 14114 (2010) CrossRefGoogle Scholar
  5. 5.
    Faenov, A.Ya., et al.: Low-threshold ablation of dielectrics irradiated by picosecond soft x-ray laser pulses. Appl. Phys. Lett. 94, 231107 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    Kawachi, T., et al.: Observation of polarization of the soft x-ray laser line in neonlike germanium ions. Phys. Rev. Lett. 75, 3826–3829 (1995) ADSCrossRefGoogle Scholar
  7. 7.
    Kim, C.M., et al.: Pulse buildup from noise and intrinsic polarization of plasma-based x-ray lasers. Phys. Rev. A 84, 013834 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    Kando, M., et al.: Demonstration of laser-frequency up-shift by electron-density modulation in a plasma wakefield. Phys. Rev. Lett. 99, 135001 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    Kawachi, T., Kato, Y.: Resonant photo-pumping x-ray laser scheme using intense characteristic x-rays for water-window radiation generation. Phys. Rev. A 84, 063848 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    Kawachi, T., et al.: Source development and novel applications of laser driven plasma x-ray lasers in JAEA. In: Proceedings of X-Ray Lasers 2010. Springer Proceedings in Physics, vol. 136, pp. 15–24 (2010) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • T. Kawachi
    • 1
  • A. Sasaki
    • 1
  • M. Nishikino
    • 1
  • M. Ishino
    • 1
  • N. Hasegawa
    • 1
  • T. Imazono
    • 1
  • Y. Ochi
    • 1
  • M. Tanaka
    • 1
  • A. Y. Faenov
    • 1
    • 4
  • T. A. Pikuz
    • 1
  • A. Pirozhkov
    • 1
  • T. Esirkepov
    • 1
  • T. Nakamura
    • 1
  • M. Kando
    • 1
  • S. V. Bulanov
    • 1
  • K. Kondo
    • 1
  • K. Janulewicz
    • 2
  • C. M. Kim
    • 2
  • H. Stiel
    • 3
  • G. Norman
    • 4
  • T. Suemoto
    • 5
  • T. Tomita
    • 6
  • K. Namikawa
    • 7
  • M. Yamagiwa
    • 1
  • Y. Kato
    • 1
  1. 1.Quantum Beam Science DirectorateJAEAKizugawaJapan
  2. 2.Advanced Photon Research InstituteGISTGwangjuRepublic of Korea
  3. 3.Max-Born Institute for Nonlinear Optics and Short Pulse SpectroscopyBerlinGermany
  4. 4.Joint Institute for High TemperaturesRussian Academy of ScienceMoscowRussia
  5. 5.Institute of Solid State Physics (ISSP)University of TokyoKashiwaJapan
  6. 6.Faculty of EngineeringUniversity of TokushimaTokushimaJapan
  7. 7.Research Institute for Science & TechnologyTokyo University of ScienceNodaJapan

Personalised recommendations