Speckle Statistics, Coherence and Polarization of a Collisional Soft X-Ray Laser

  • K. A. Janulewicz
  • C. M. Kim
  • P. V. Nickles
  • H. Stiel
  • M. Nishikino
  • N. Hasegawa
  • T. Kawachi
Part of the Springer Proceedings in Physics book series (SPPHY, volume 147)


A simple model of dynamics of a collisional X-ray laser is given applying Maxwell-Bloch equations in a uniform approximation. The main considered parameters include polarization and coherence of the emitted radiation. Speckle pattern, typical for a radiation source of partial coherence, especially, if involving process of the amplified spontaneous emission (ASE), are used as an alternative source of information on the processes occurring in the active medium of an X-ray laser. A level of partial coherence is deduced by statistical analysis of the speckle pattern generated in the output beam of the laser. It is shown that plasma fluctuation and non-Gaussian character of the statistics are needed to reproduce the transverse coherence values reported in the experiment.


Speckle Pattern Amplify Spontaneous Emission Spatial Coherence Coherence Time Fringe Visibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to pay credit to Dr. Hyung Taek Kim for his help in the experimental effort. The work was supported partially by TBP GIST, NCRC and DASAN.


  1. 1.
    Pert, G.J.: Output characteristics of amplified-spontaneous-emission lasers. J. Opt. Soc. Am. B 11, 1425 (1994) ADSCrossRefGoogle Scholar
  2. 2.
    Keenan, R., et al.: High-repetition-rate grazing-incidence pumped X-ray laser operating at 18.9 nm. Phys. Rev. Lett. 94, 103901 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    Luther, B.M., et al.: Saturated high-repetition-rate 18.9-nm tabletop laser in nickellike molybdenum. Opt. Lett. 30, 165–167 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    Kim, H.T., et al.: Characteristics of Ni-like silver X-ray laser pumped by single profiled laser pulse. J. Opt. Soc. Am. B 25, B76–B84 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    Kravis, S.P., Allen, L.: Measurement of the statistics and spatial distribution of pulsed spontaneous emission. Opt. Commun. 23, 289 (1977) ADSCrossRefGoogle Scholar
  6. 6.
    Nishikino, M., et al.: Characterization of a high-brilliance soft x-ray laser at 13.9 nm by use of an oscillator-amplifier configuration. Appl. Opt. 47, 1129 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    Lu, P., et al.: Spatial coherence of prepulse-induced neon-like x-ray lasers. Phys. Rev. A 58, 628 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    Liu, Y., et al.: Spatial coherence measurements of a 13.2 nm transient nickel-like cadmium soft X-ray laser pumped at grazing incidence. Opt. Express 14, 12872–12879 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    Gan, C.H., Gbur, G., Visser, T.D.: Surface plasmons modulate the spatial coherence of light in Young’s interference experiment. Phys. Rev. Lett. 98, 043908 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    Kawachi, T., et al.: Observation of polarization of the soft X-ray laser line in neonlike germanium ions. Phys. Rev. Lett. 75, 3826 (1995) ADSCrossRefGoogle Scholar
  11. 11.
    Rus, B., et al.: Demonstration of amplification of a polarized soft-x-ray laser beam in a neonlike germanium plasma. Phys. Rev. A 51, 2316–2327 (1995) ADSCrossRefGoogle Scholar
  12. 12.
    Gilbaud, O., et al.: Origin of microstructures in picosecond X-ray laser beam. Europhys. Lett. 74, 823–829 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    Goodman, J.W.: Statistical properties of laser speckle pattern. In: Dainty, J.C. (ed.) Laser Speckle and Related Phenomena, 2nd edn. Springer, Berlin (1984) Google Scholar
  14. 14.
    Goodman, J.W.: Speckle Phenomena in Optics: Theory and Applications. Roberts & Company, Englewood (2006) Google Scholar
  15. 15.
    Goodman, J.W.: Speckle with a finite number of steps. Appl. Opt. 47, A111 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    Kawachi, T., et al.: Source development of novel coherent x-rays and their applications in JAEA. In: Sebban, S., et al. (eds.) X-Ray Lasers 2012. Springer Proceedings in Physics, vol. 147. Springer, Cham (2013). Chapter 23 in this book Google Scholar
  17. 17.
    Kim, C.M., Lee, J., Janulewicz, K.A.: Coherent amplification of an ultrashort pulse in a high- and swept-gain medium with level degeneracy. Phys. Rev. Lett. 104, 053901 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    Koch, J.A., et al.: Experimental and theoretical investigation of neonlike selenium x-ray laser spectral linewidths and their variation with amplification. Phys. Rev. A 50, 1877 (1994) ADSCrossRefGoogle Scholar
  19. 19.
    Rocca, J.J., et al.: Saturated 13.2 nm high-repetition rate laser in nickel-like cadmium. Opt. Lett. 30, 2581–2583 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    Goodman, J.W.: Statistical Optics, Chap. 9.1. A Wiley-Interscience Publication. Wiley, New York (1985) Google Scholar
  21. 21.
    London, R.A., Strauss, M., Rosen, M.D.: Modal analysis of X-ray laser coherence. Phys. Rev. Lett. 65, 563 (1990) ADSCrossRefGoogle Scholar
  22. 22.
    Feit, M.D., Fleck, J.A. Jr.: Spatial coherence of laboratory soft x-ray lasers. Opt. Lett. 16, 76 (1991) ADSCrossRefGoogle Scholar
  23. 23.
    Abernathy, D.L., et al.: Small-angle X-ray scattering using coherent undulator radiation at the ESRF. J. Synchrotron Radiat. 5, 37–47 (1998) CrossRefGoogle Scholar
  24. 24.
    Tsui, O.K.C., Mochrie, S.G.J., Berman, L.E.: Statistical analysis of X-ray speckle at the NSLS. J. Synchrotron Radiat. 5, 30–36 (1998) CrossRefGoogle Scholar
  25. 25.
    Pert, G.J.: Optimizing the performance of nickel-like collisionally pumped x-ray lasers. Phys. Rev. A 73, 033809 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    Casperson, L., Yariv, A.: Pulse propagation in a high-gain medium. Phys. Rev. Lett. 26, 293 (1971) ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • K. A. Janulewicz
    • 1
  • C. M. Kim
    • 1
  • P. V. Nickles
    • 2
  • H. Stiel
    • 3
  • M. Nishikino
    • 4
  • N. Hasegawa
    • 4
  • T. Kawachi
    • 4
  1. 1.Advanced Photonics Research InstituteGwangju Institute of Science and TechnologyGwangjuRep. of Korea
  2. 2.WCU Dept. of Nanobio Materials and ElectronicsGwangju Institute of Science and TechnologyGwangjuRep. of Korea
  3. 3.Max Born InstituteBerlinGermany
  4. 4.Japan Atomic Energy AgencyKizugawaJapan

Personalised recommendations