Advertisement

Model-Data Synthesis of Monsoon Amplitudes for the Holocene and Eemian

  • Birgit SchneiderEmail author
  • Ralph R. Schneider
  • Yiming Wang
  • Vyacheslav Khon
Chapter
Part of the SpringerBriefs in Earth System Sciences book series (BRIEFSEARTHSYST)

Abstract

Monsoon intensity is driven by changes in hemispheric summer insolation. Marine proxy data show distinct glacial-interglacial variability with changes in vegetation and weathering inferred from the terrigenous fraction, e.g., by plant lipid and mineral composition. Unfortunately, no quantitative evidence is available for differences in monsoonal precipitation. A sensitivity study with a vegetation model implies that C4/C3 ratios are influenced by individual changes in precipitation, CO2, and temperature. Therefore, sedimentary δ13C records of land plant lipids are no unambiguous indicator for humidity-driven changes in paleovegetation. A novel indicator of past humidity over continents, the δD signature of leaf waxes, suggests similar conditions for the Indian summer monsoon during the Holocene and Eemian. However, this new proxy requires more detailed regional studies, since climate model simulations clearly show significant differences in monsoon strength between interglacial periods. Accordingly, a more intense hydrological cycle is expected for the Eemian due to an overall warmer climate driven by precessional forcing.

Keywords

Paleomonsoon Precipitation reconstructions Marine and terrestrial proxy data Climate modeling Coupled atmosphere-ocean hydrological cycle 

References

  1. Braconnot P, Marzin C, Gregoire L, Mosquet E, Marti O (2008) Monsoon response to changes in Earth’s orbital parameters: comparisons between simulations of the Eemian and of the Holocene. Clim Past 4:281–294CrossRefGoogle Scholar
  2. Cruz FW, Burns SJ, Karmann I, Sharp WD, Vuille M, Cardoso AO, Ferrari JA, Silva Dias PL, Viana O (2005) Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434(7029):63–66CrossRefGoogle Scholar
  3. Cruz FW, Vuille M, Burns SJ, Wang X, Cheng H, Werner M, Edwards L, Karmann I, Auler AS, Nguyen H (2009) Orbitally driven east-west antiphasing of South American precipitation. Nat Geosci 2(3):210–214CrossRefGoogle Scholar
  4. Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609–12646. doi: 10.1029/97JC00480 CrossRefGoogle Scholar
  5. Fleitmann D, Burns SJ, Neff U, Mangini A, Matter A (2003) Changing moisture sources over the last 330,000 years in Northern Oman from fluid-inclusion evidence in speleothems. Quat Res 60(2):223–232CrossRefGoogle Scholar
  6. Haxeltine A, Prentice IC (1996) BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, availability, and competition among plant functional types. Global Biogeochem Cycles 10:693–709CrossRefGoogle Scholar
  7. IPCC (2007) Climate change 2007: synthesis report. contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, SwitzerlandGoogle Scholar
  8. Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin AV (2003) Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J Geophys Res. doi: 10.1029/2002JD002559
  9. Khon VC, Park W, Latif M, Mokhov I, Schneider B (2010) Response of the hydrological cycle to orbital and greenhouse gas forcing. Geophys Res Lett. doi: 10.1029/2010GL044377 Google Scholar
  10. Khon VC, Park W, Latif M, Mokhov I, Schneider B (2012) Tropical circulation and hydrological cycle response to orbital forcing. Geophys Res Lett. doi: 10.1029/2012GL052482 Google Scholar
  11. Kukla GJ, Bender ML, de Beaulieu JL, Bond G, Broecker WS, Cleveringa P, Gavin JE, Herbert TD, Imbrie J, Jouzel J, Keigwin LD, Knudsen KL, McManus JF, Merkt J, Muhs DR, Müller H, Poore RZ, Porter SC, Seret G, Shackleton NJ, Turner C, Tzedakis PC, Winograd IJ (2002) Last interglaical climates. Quat Res 58:2–13CrossRefGoogle Scholar
  12. Kutzbach JE, Liu X, Liu Z, Chen G (2008) Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years. Clim Dynam 30:567–579CrossRefGoogle Scholar
  13. Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285CrossRefGoogle Scholar
  14. Leduc G, Schneider R, Kim JH, Lohmann G (2010) Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. Quat Sci Rev 29(7–8):989–1004CrossRefGoogle Scholar
  15. Madec G (2008) NEMO ocean engine. Notes Pole Modél. 27, Institute Pierre-Simon Laplace, ParisGoogle Scholar
  16. Martinson DG, Pisias NG, Hays JD, Imbrie JD, Moore TC, Shackleton NJ (1987) Age dating and the orbital theory of the Ice Ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat Res 27:1–29CrossRefGoogle Scholar
  17. NGRIP-members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431(7005):147–151CrossRefGoogle Scholar
  18. Park W, Keenlyside N, Latif M, Ströh A, Redler R, Roeckner E, Madec G (2009) Tropical pacific climate and its response to global warming in the kiel climate model. Clim Dynam doi:  10.1175/2008JCLI2261.1
  19. Roeckner E, Bauml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. Part I: Model description, Report No. 349. Max Planck Institute For Meteorology, HamburgGoogle Scholar
  20. Salau OR, Schneider B, Park W, Khon V, Latif M (2012) Modeling the ENSO impact of orbitally induced mean state climate changes. J Geophys Res. doi: 10.1029/2011JC007742 Google Scholar
  21. Schneider B, Leduc G, Park W (2010) Disentangling seasonal signals in Holocene climate trends by satellite-model-proxy integration. Paleoceanography. doi: 10.1029/2009PA001893 Google Scholar
  22. Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen CC, Dorale JA (2001) A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave. China Sci 294(5550):2345–2348Google Scholar
  23. Wang YJ, Cheng H, Edwards RL, Kong X, Shao X, Chen S, Wu JY, Jiang X, Wang X, An ZS (2008) Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451(7182):1090–1093CrossRefGoogle Scholar
  24. Wang YV, Larsen T, Leduc G, Andersen N, Blanz T, Schneider RR (2013) What does leaf wax δD from a mixed C3/C4 vegetation region tell us? Geochim Cosmochim Acta 111:128–139CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Birgit Schneider
    • 1
    Email author
  • Ralph R. Schneider
    • 1
  • Yiming Wang
    • 1
  • Vyacheslav Khon
    • 1
  1. 1.Department of GeosciencesInstitute of Geosciences, University of KielKielGermany

Personalised recommendations