Watching Subgraphs to Improve Efficiency in Maximum Clique Search

Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 489)


This paper describes a new technique referred to as watched subgraphs which improves the performance of BBMC, a leading state of the art exact maximum clique solver (MCP). It is based on watched literals employed by modern SAT solvers for Boolean constraint propagation. The paper proposes to watch two subgraphs of critical sets during MCP search to efficiently compute new steps and bounds. Reported results validate the approach as the size and density of problem instances rise, while achieving comparable performance in the general case.


Maximum Clique Maximum Clique Problem Color Label Coloring Algorithm Candidate Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    San Segundo, P., Rodríguez-Losada, D., Matía, F., Galán, R.: Fast exact feature based data correspondence search with an efficient bit-parallel MCP solver. Applied Intelligence 32(3), 311–329 (2010)CrossRefGoogle Scholar
  2. 2.
    Tomita, E., Seki, T.: An efficient branch and bound algorithm for finding a maximum clique. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 278–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Konc, J., Janežič, D.: An improved branch and bound algorithm for the maximum clique problem. MATCH Commun. Math. Comput. Chem. 58, 569–590 (2007)MathSciNetGoogle Scholar
  4. 4.
    Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and faster branch-and-bound algorithm for finding a maximum clique. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 191–203. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    San Segundo, P., Rodriguez-Losada, D., Jimenez, A.: An exact bit-parallel algorithm for the maximum clique problem. Computers & Operations Research 38(2), 571–581 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    San Segundo, P., Matia, F., Rodriguez-Losada, D., Hernando, M.: An improved bit parallel exact maximum clique algorithm. Optimization Letters (2011), doi:10.1007/s11590-011-0431-yGoogle Scholar
  7. 7.
    Prosser, P.: Exact Algorithms for Maximum Clique: A Computational Study. Algorithms 5(4), 545–587 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
  9. 9.
    Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: XXXVIII Proc. Annual Design Automation Conference (DAC 2001), pp. 530–535. ACM, New York (2001)Google Scholar
  10. 10.
    Johnson, D.S., Trick, M.A. (eds.): Cliques, coloring and Satisfiability. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26. American Mathematical Society, Providence (1996)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Centro de Automática y Robótica (CAR-CSIC)Universidad Politécnica de Madrid (UPM)MadridSpain
  2. 2.Universidad Politécnica de MadridMadridSpain

Personalised recommendations