Advertisement

Segmentation of DNA into Coding and Noncoding Regions Based on Inter-STOP Symbols Distances

  • Carlos A. C. BastosEmail author
  • Vera Afreixo
  • Sara P. Garcia
  • Armando J. Pinho
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 222)

Abstract

In this study we set to explore the potentialities of the inter-genomic symbols distance for finding the coding regions in DNA sequences. We use the distance between STOP symbols in the DNA sequence and a chi-square statistic to evaluate the nonhomogeneity of the three possible reading frames. The results of this exploratory study suggest that inter-STOP symbols distance has strong ability to discriminate coding regions.

Keywords

inter-STOP symbols distance DNA coding regions chi-square 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afreixo, V.M.A., Ferreira, P.J.S.G., Santos, D.M.S.: Fourier analysis of symbolic data: A brief review. Digital Signal Processing 14(6), 523–530 (2004)CrossRefGoogle Scholar
  2. 2.
    Frenkel, F.E., Korotkov, E.V.: Using triplet periodicity of nucleotide sequences for finding potential reading frame shifts in genes. DNA Research 16(2)Google Scholar
  3. 3.
    Abbasi, O., Rostami, A., Karimian, G.: Identification of exonic regions in dna sequences using cross-correlation and noise suppression by discrete wavelet transform. BMC Bioinformatics 12, 430 (2011)CrossRefGoogle Scholar
  4. 4.
    Wang, W., Johnson, D.H.: Computing linear transforms of symbolic signals. IEEE Trans. Signal Processing 50(3), 628–634 (2002)CrossRefGoogle Scholar
  5. 5.
    Nicorici, D., Astola, J.: Segmentation of DNA into coding and noncoding regions based on recursive entropic segmentation and stop-codon statistics. EURASIP Journal on Applied Signal Processing 1, 81–91 (2004)Google Scholar
  6. 6.
    Deng, S., Shi, Y., Yuan, L., Li, Y., Ding, G.: Detecting the borders between coding and non-coding dna regions in prokaryotes based on recursive segmentation and nucleotide doublets statistics. BMC Genomics 13(suppl. 8), S19 (2011)Google Scholar
  7. 7.
    Tsonis, A.A., Kumar, P., Elsner, J.B., Tsonis, P.A.: Wavelet analysis of DNA sequences. Phys. Rev. E 53(2), 1828–1834 (1996)CrossRefGoogle Scholar
  8. 8.
    Afreixo, V., Bastos, C.A.C., Pinho, A.J., Garcia, S.P., Ferreira, P.J.S.G.: Genome analysis with inter-nucleotide distances. Bioinformatics 25(23), 3064–3070 (2009)CrossRefGoogle Scholar
  9. 9.
    Bastos, C.A.C., Afreixo, V., Pinho, A.J., Garcia, S.P., Rodrigues, J.M.O.S., Ferreira, P.J.S.G.: Inter-dinucleotide distances in the human genome: an analysis of the whole-genome and protein-coding distributions. Journal of Integrative Bioinformatics 8(3), 172 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Carlos A. C. Bastos
    • 1
    Email author
  • Vera Afreixo
    • 2
  • Sara P. Garcia
    • 1
  • Armando J. Pinho
    • 1
  1. 1.Signal Processing Lab, IEETA and Department of Electronics Telecommunications and InformaticsUniversity of AveiroAveiroPortugal
  2. 2.Department of MathematicsUniversity of AveiroAveiroPortugal

Personalised recommendations