Keystrokes and Clicks: Measuring Stress on E-learning Students

  • Manuel Rodrigues
  • Sérgio Gonçalves
  • Davide Carneiro
  • Paulo Novais
  • Florentino Fdez-Riverola
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 220)


In traditional learning, teachers can easily get an insight into how their students work and learn and how they interact in the classroom. However, in online learning, it is more difficult for teachers to see how individual students behave. With the enormous growing of e-learning platforms, as complementary or even primary tool to support learning in organizations, monitoring students’ success factors becomes a crucial issue. In this paper we focus on the importance of stress in the learning process. Stress detection in an E-learning environment is an important and crucial factor to success. Estimating, in a non-invasive way, the students’ levels of stress, and taking measures to deal with it, is then the goal of this paper. Moodle, by being one of the most used e-learning platforms is used to test the log tool referred in this work.


E-learning Behavioral Analysis Stress Moodle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carneiro, D., Novais, P., Neves, J.: Toward seamless environments for dispute prevention and resolution. In: Novais, P., Preuveneers, D., Corchado, J.M. (eds.) ISAmI 2011. AISC, vol. 92, pp. 25–32. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Palmer, S., Cooper, C., Thomas, K.: Creating a Balance. Managing Stress British Library, London (2003)Google Scholar
  3. 3.
    Rodrigues, M., Fdez-Riverola, F., Novais, P.: Moodle and Affective Computing - Knowing Who´s on the Other Side. In: 10th European Conference on E-learning, ECEL-2011, November 10-11, pp. 678–685. University of Brighton, Brighton (2011) ISBN: 978-1-908272-22-5Google Scholar
  4. 4.
    Fdez-Sampayo, C., Reboiro, M., Glez-Peña, D., Fdez-Riverola, F.: Sistema de seguimiento de actividades en moodle para la evaluación comparativa del ratio de participación alumno/clase. In: Conferencia Ibero-Americana WWW/Internet 2009, CIAWI 2009, Madrid, Spain, October 21 (2009)Google Scholar
  5. 5.
    Broekens, J., Jonker, C.M., Meyer, J.J.C.: Affective negotiation support systems. Journal of Ambient Intelligence and Smart Environments 2(2) (2010)Google Scholar
  6. 6.
    Zimmermann, P., Guttormsen, S., Danuser, B., Gomez, P.: Affective Computing-A Rationale For Measuring Mood With Mouse And Keyboard. International Journal of Occupational Safety and Ergonomics: JOSE 9(4), 539–551 (2003)Google Scholar
  7. 7.
    Tsihrintzis, G.A., Virvou, M., Alepis, E., Stathopoulou, I.-O.: Towards Improving Visual-Facial Emotion Recognition through Use of Complementary Keyboard-Stroke Pattern Information. Itng. In: Fifth International Conference on Information Technology: New Generation, pp. 32–37 (2008)Google Scholar
  8. 8.
    Castillo, J.C., Rivas-Casado, A., Fernández-Caballero, A., López, M.T., Martínez-Tomás, R.: A multisensory monitoring and interpretation framework based on the model-view-controller paradigm. In: Proceedings of the 4th International Workshop on the Interplay between Natural and Artificial Computation, vol. 1, pp. 441–450 (2011)Google Scholar
  9. 9.
    Fernández-Caballero, A., Castillo, J.C., Martínez-Cantos, J., Martínez-Tomás, R.: Optical flow or image subtraction in human detection from infrared camera on mobile robot. Robotics and Autonomous Systems 58(12), 1273–1281 (2010)CrossRefGoogle Scholar
  10. 10.
    Dowland, P., Furnell, S.: A Long-Term Trial of Keystroke Profiling Using Digraph, Trigraph and Keyword Latencies. In: Deswarte, Y., Cuppens, F., Jajodia, S., Wang, L. (eds.) Security and Protection in Information Processing Systems, vol. 147, pp. 275–289. Springer, US (2004), doi:10.1007/1-4020-8143-X_18CrossRefGoogle Scholar
  11. 11.
    Monrose, F., Rubin, A.: Authentication via keystroke dynamics. In: Proceedings of the 4th ACM Conference on Computer and Communications Security, pp. 48–56. ACM, New York (1997), doi:10.1145/266420.266434Google Scholar
  12. 12.
    Alves, F., Pagano, A., Da Silva, I.: A new window on translators’ cognitive activity: methodological issues in the combined use of eye tracking, key logging and retrospective protocols. Copenhagen Studies in Language (38), 267–291 (2010), (retrieved)
  13. 13.
    Freeman, J., Ambady, N.: MouseTracker: Software for studying real-time mental processing using a computer mouse-tracking method. Behavior Research Methods 42(1), 226–241 (2010), doi:10.3758/BRM.42.1.226CrossRefGoogle Scholar
  14. 14.
    Arroyo, E., Selker, T., Wei, W.: Usability tool for analysis of web designs using mouse tracks. In: CHI 2006 Extended Abstracts on Human Factors in Computing Systems, pp. 484–489. ACM, New York (2006), doi:10.1145/1125451.1125557Google Scholar
  15. 15.
    Akamatsu, M., MacKenzie, I.S.: Changes in applied force to a touchpad during pointing tasks. International Journal of Industrial Ergonomics 29(3), 171–182 (2002), doi:10.1016/S0169-8141(01)00063-4CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Manuel Rodrigues
    • 1
    • 2
  • Sérgio Gonçalves
    • 3
  • Davide Carneiro
    • 3
  • Paulo Novais
    • 3
  • Florentino Fdez-Riverola
    • 2
  1. 1.Informatics GroupSecondary School Martins SarmentoGuimarãesPortugal
  2. 2.Informatics DepartmentUniversity of VigoOurenseSpain
  3. 3.Informatics Department/Computer Science and Technology CenterUniversity of MinhoBragaPortugal

Personalised recommendations